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Abstract:  

Observations in classical mechanics education reveal that students frequently 

face challenges when deducing the net force (𝐹⃗𝑛𝑒𝑡)from the instantaneous 

displacement equation (𝑟(t)). The conventional approach, rooted in Newton's 

Second Law (𝐹⃗𝑛𝑒𝑡= m𝑎⃗), necessitates a series of sequential differentiations which 

can be prone to error. To streamline these derivations and provide a more direct 

analytical tool for dynamic analysis, this paper introduces a derived formula that 

allows for the straightforward determination of net force directly from 

displacement. This work facilitates a more efficient connection between 

kinematic descriptions and their underlying dynamic causes, offering both 

pedagogical benefits and analytical precision. 

Keywords: Classical Mechanics, Instantaneous Displacement, Net Force 

Derivation, Kinematics-Dynamics Link. 

 الملخص

الميكانيكا الكلاسيكية أن الطلاب يواجهون تحديات متكررة عند استنتاج    لقد لاحظنا اثناء تدريسنا لمقرر

  نهج التقليدي، القائم على قانون نيوتن الثاني مالفي   (𝑟(t)) من معادلة الإزاحة اللحظية(𝐹⃗𝑛𝑒𝑡)محصلة القوى

((𝐹⃗𝑛𝑒𝑡= m𝑎⃗،للأخطاء   والذى عرضة  تكون  قد  التي  المتتابعة  التفاضل  عمليات  من  سلسلة  يتطلب 

الرياضية. ومن أجل تبسيط هذه الاشتقاقات وتقديم أداة تحليلية أكثر مباشرة للتحليل الديناميكي، تقدم هذه 

. يساهم  الورقة البحثية صيغة رياضية مستنتجة تسمح بالتحديد المباشر لمحصلة القوى انطلاقاً من الإزاحة
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هذا العمل في تسهيل الربط بين الأوصاف الكينماتيكية ومسبباتها الديناميكية الأساسية بكفاءة عالية، مما 

 .يوفر فوائد تعليمية جمة ودقة تحليلية متقدمة

 اشتقاق القوة المحصلة الميكانيكا الكلاسيكية، الإزاحة اللحظية، اشتقاق القوة المحصلة،    الكلمات المفتاحية:

1. Introduction 

The field of dynamics is central to classical mechanics, primarily focusing on the 

causal link between a particle's motion and the governing forces [1]. This 

relationship is traditionally quantified by Newton’s Second Law, which defines 

the net force (𝐹⃗𝑛𝑒𝑡)as the product of an object's mass (m) and its acceleration (𝑎⃗) 

[2]. While the theoretical framework is well-established, its practical 

implementation—especially in pedagogical and complex analytical contexts—

often involves a redundant multi-stage differential process [3].                           

In standard practice, determining the resultant force from an instantaneous 

displacement function (𝑟(t)) requires a two-step differentiation: first to derive 

velocity (𝑣⃗(t)), and subsequently to obtain acceleration. This fragmented 

derivation can sometimes obscure the direct physical correlation between position 

and dynamics, leading to analytical inefficiencies in both classroom settings and 

computational modeling [2, 3].                               

Recent studies highlight that the mathematical complexity in derivation often acts 

as a barrier to conceptual understanding in physics [7]. This paper addresses this 

gap by offering a streamlined analytical route.                            

Motivated by the need to streamline this process, the present work introduces a 

unified analytical approach. We propose a direct formulation that bypasses 

intermediate kinematic variables, allowing for the immediate inference of force 

from displacement. By establishing this consolidated framework, this paper aims 

to simplify the computational transition from kinematics to dynamics, providing 

a more intuitive and efficient tool for both educational and research applications 

in mechanical systems. 

 

2. Classical Derivation: Mathematical Derivation of the Direct Force 

Equation 

 

2.1 Establishing the Foundation 

The derivation begins by recalling the fundamental principles of Newtonian 

mechanics. The motion of a particle of constant mass m is entirely described by 

its instantaneous position vector (𝑟(𝑡)) 

According to Newton's Second Law of Motion : 

 

𝐹⃗𝑛𝑒𝑡 = 𝑚𝑎⃗                        (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛1) 

 

 
2.2 Expressing Acceleration through Displacement 
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The instantaneous velocity (𝑣⃗(𝑡))is defined as the first-time derivative of the 

position vector, and the instantaneous acceleration (𝑎⃗(𝑡)) is defined as the first-

time derivative of the velocity vector, which is equivalent to the second time 

derivative of the position vector (𝑟(𝑡)). 
Given the instantaneous displacement equation : 

 

𝑟 = 𝑟(𝑡) 

 

The acceleration vector (𝑎⃗(𝑡))  is : 

 

𝑎⃗(𝑡) =
𝑑𝑣⃗

𝑑𝑡
=

𝑑

𝑑𝑡
(

𝑑𝑟

𝑑𝑡
) =

𝑑2𝑟

𝑑𝑡2
                          (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2) 

 
2.3 The Direct Force Equation 

By substituting the expression for acceleration (Equation 2) directly into 

Newton's Second Law (Equation 1), we obtain the generalized and direct force 

equation : 

𝐹⃗𝑛𝑒𝑡(𝑡) = 𝑚.
𝑑2(𝑟)

𝑑𝑡2
 

 

This equation provides a single, unified step to determine the resultant force from 

the displacement function . 

Building upon this direct relationship, the following section introduces a 

generalized power-law formulation that further simplifies force inference for 

specific motion profiles. 

 

3. Proposed Methodology: A New Mathematical Derivation for Net force  

The Proposed General Formula : 

Considering a particle of mass m whose displacement s follows the power-law 

function s(t) = Atn, the net force  ∑ 𝐹can be expressed as a direct function of time 

and the power index n: 

∑ 𝐹 = 𝑚𝐴𝑛(𝑛 − 1)𝑡𝑛−2 

 

Analysis of Physical States based on n : 

− Case 1 (n=0): The body is at rest (s = A), leading to ∑ 𝐹= 0. 

− Case 2 (n=1): The body moves with a constant velocity (v = A), and the 

acceleration is zero, thus ∑ 𝐹= 0. 

− Case 3 (n>1): The body experiences an increasing acceleration, indicating 

a time-dependent net force . 

− Case 4 (0<n<1): The body undergoes deceleration (retarding force). 
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4. Physical Applications and Significance 

The proposed generalized formula∑ 𝐹 = 𝑚𝐴𝑛(𝑛 − 1)𝑡𝑛−2 provides a unified 

framework to describe various physical phenomena by simply adjusting the 

power index n. This section explores the practical implications of the formula 

across different motion regimes : 

4.1 Motion under Constant Gravity (n = 2 ( 

When n = 2, the displacement equation represents a quadratic relationship with 

time, s(t) = At2 

Substituting n = 2 into the proposed formula yields: 

 

 

∑ 𝐹 = 𝑚𝐴(2)(2 − 1)𝑡2−2 = 2𝑚𝐴 

 

 

Significance: The net force is constant and independent of time. This perfectly 

aligns with the classical physics of Free Fall, where 2A represents the 

gravitational acceleration (g), and the net force is the object's weight (W = mg). 

4.2  Constant Jerk Systems (n = 3) 

In engineering applications where acceleration changes at a constant rate (known 

as "Jerk"), the displacement follows a cubic function s(t) = At3. 

Substituting n = 3 yields: 

 

 

∑ 𝐹 = 6𝑚𝐴𝑡 

 

 

Significance: This describes systems where the required force must increase 

linearly with time, such as in the launch phase of high-speed elevators or 

advanced propulsion systems designed to minimize mechanical stress. 

4.3 Sub-linear Dynamics and Deceleration (0 < n < 1) 

For indices between 0 and 1, the formula describes motion where the velocity 

decreases over time . 

Significance: This is highly applicable in Fluid Dynamics and the study of 

particles moving through high-viscosity mediums. The formula provides a direct 

method to calculate the "Retarding Force" without complex differential 

modeling. 

 

 

 

 

Table 1: Summary Table for the applications 
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Motion Regime 
Power 

index (n) 

Resulting Net 

force 

∑ 𝐹 

Physical example 

Static Equilibrium n=0 0 Object at rest 

Uniform Motion n=1 0 Constant velocity 

Uniform 

Acceleration 
n=2 2mA (constant) Free fall 

Variable 

Acceleration 
n=3 6mAt (Linear) 

Constant Jerk 

Motion 

 

5. Comparative Analysis of Analytical Efficiency 

To demonstrate the practical advantage of the proposed general equation, a 

comparison is conducted between the traditional Newtonian derivation and the 

proposed direct method . 

5.1The Traditional Procedural Burden 

In the classical approach, the transition from a displacement function 

 s(t) = Atn to the net force  ∑ 𝐹 requires a two-step differential operation : 

1. First Differentiation: Calculating instantaneous velocity,  

𝑣(𝑡) =
𝑑𝑠

𝑑𝑡
= 𝑛𝐴𝑡𝑛−1 

2. Second Differentiation: Calculating instantaneous acceleration, 

𝑎(𝑡) =
𝑑𝑣

𝑑𝑡
= 𝑛(𝑛 − 1)𝐴𝑡𝑛−2 

3. Application of Mass: Multiplying by mass to find ∑ 𝑭=ma(t). 

This sequential process increases the likelihood of algebraic errors, especially in 

complex or high-order power functions . 

 

5.2 The Proposed Direct Pathway 

The proposed formula ∑ 𝐹 = 𝑚𝐴𝑛(𝑛 − 1)𝑡𝑛−2 bypasses these intermediate 

stages. It allows for a single-step mapping from the displacement parameters (A, 

n) directly to the dynamic resultant force. 

 

 

Table 2: Efficiency Comparison between Methods 
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Feature 
Traditional Newtonian 

Method 

Proposed Direct 

Method 

Operational Steps Three distinct stages (v, a, F) Single-step operation 

Mathematical Tool Double differentiation 
Direct coefficient 

substitution 

Error Probability 
Moderate (due to sequential 

steps) 

Minimal 

(direct calculation) 

Computational 

Time 

Higher 

(requires intermediate 

variables) 

Optimized 

(direct output) 

Pedagogical Clarity 
Fragmented 

(velocity vs. acceleration) 

Unified 

(Displacement to 

Force) 

 

6. Conclusion  

This study has successfully introduced a direct analytical formulation for deriving 

net force from instantaneous displacement equations, effectively bypassing the 

traditional, multi-step differentiation process. By establishing the general 

equation ∑ 𝐹 = 𝑚𝐴𝑛(𝑛 − 1)𝑡𝑛−2, we have provided a tool that enhances both 

computational speed and analytical accuracy across various physical states . 

As demonstrated in our comparative analysis, this approach significantly reduces 

the procedural burden and minimizes potential algebraic errors. Integrating 

kinematics and dynamics remains a central challenge in physics pedagogy, 

necessitating more unified mathematical tools like the one proposed in this study 

[8].  

This consolidated framework not only simplifies the transition between kinematic 

descriptions and dynamic causes but also offers a more intuitive pathway for 

students and researchers alike. Future work could explore the integration of this 

direct method into automated physical simulation software to further optimize 

dynamic modeling. 
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