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Abstract:
Observations in classical mechanics education reveal that students frequently
face challenges when deducing the net force (ﬁnet)from the instantaneous
displacement equation (7(t)). The conventional approach, rooted in Newton's

Second Law (ﬁneﬁ ma), necessitates a series of sequential differentiations which
can be prone to error. To streamline these derivations and provide a more direct
analytical tool for dynamic analysis, this paper introduces a derived formula that
allows for the straightforward determination of net force directly from
displacement. This work facilitates a more efficient connection between
kinematic descriptions and their underlying dynamic causes, offering both
pedagogical benefits and analytical precision.
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1. Introduction

The field of dynamics is central to classical mechanics, primarily focusing on the
causal link between a particle's motion and the governing forces [1]. This
relationship is traditionally quantified by Newton’s Second Law, which defines

the net force (ﬁnet)as the product of an object's mass (m) and its acceleration (@)
[2]. While the theoretical framework is well-established, its practical
implementation—especially in pedagogical and complex analytical contexts—
often involves a redundant multi-stage differential process [3].

In standard practice, determining the resultant force from an instantaneous
displacement function (#(t)) requires a two-step differentiation: first to derive
velocity (v(t)), and subsequently to obtain acceleration. This fragmented
derivation can sometimes obscure the direct physical correlation between position
and dynamics, leading to analytical inefficiencies in both classroom settings and
computational modeling [2, 3].

Recent studies highlight that the mathematical complexity in derivation often acts
as a barrier to conceptual understanding in physics [7]. This paper addresses this
gap by offering a streamlined analytical route.

Motivated by the need to streamline this process, the present work introduces a
unified analytical approach. We propose a direct formulation that bypasses
intermediate kinematic variables, allowing for the immediate inference of force
from displacement. By establishing this consolidated framework, this paper aims
to simplify the computational transition from kinematics to dynamics, providing
a more intuitive and efficient tool for both educational and research applications
in mechanical systems.

2. Classical Derivation: Mathematical Derivation of the Direct Force
Equation

2.1 Establishing the Foundation

The derivation begins by recalling the fundamental principles of Newtonian
mechanics. The motion of a particle of constant mass m is entirely described by
its instantaneous position vector (7(t))

According to Newton's Second Law of Motion:

F .. =md (Equationl)

2.2 Expressing Acceleration through Displacement
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The instantaneous velocity (v(t))is defined as the first-time derivative of the
position vector, and the instantaneous acceleration (d(t)) is defined as the first-
time derivative of the velocity vector, which is equivalent to the second time
derivative of the position vector (7(t)).

Given the instantaneous displacement equation:

7 = 7(t)

The acceleration vector (d(t)) is:
%(t)_dﬁ_d dr _dZF Eauation 2
A= Tac\dt ) T ae (Equation 2)

2.3The Direct Force Equation

By substituting the expression for acceleration (Equation 2) directly into
Newton's Second Law (Equation 1), we obtain the generalized and direct force
equation:

d?(7)

Free(t) = m. dt2

This equation provides a single, unified step to determine the resultant force from
the displacement function.

Building upon this direct relationship, the following section introduces a
generalized power-law formulation that further simplifies force inference for
specific motion profiles.

3. Proposed Methodology: A New Mathematical Derivation for Net force
The Proposed General Formula:

Considering a particle of mass m whose displacement s follows the power-law
function s(t) = At", the net force ), Fcan be expressed as a direct function of time
and the power index n:

z F = mAn(n — 1)t" 2

Analysis of Physical States based on n:
— Case 1 (n=0): The body is at rest (s = A), leading to ), F=0.
— Case 2 (n=1): The body moves with a constant velocity (v = A), and the
acceleration is zero, thus ). F= 0.
— Case 3 (n>1): The body experiences an increasing acceleration, indicating
a time-dependent net force.
— Case 4 (0<n<1): The body undergoes deceleration (retarding force).
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4. Physical Applications and Significance

The proposed generalized formula}, F = mAn(n — 1)t™~2 provides a unified
framework to describe various physical phenomena by simply adjusting the
power index n. This section explores the practical implications of the formula
across different motion regimes:

4.1Motion under Constant Gravity (n = 2)

When n = 2, the displacement equation represents a quadratic relationship with
time, s(t) = At?

Substituting n = 2 into the proposed formula yields:

ZF — mA(2)(2 — 1)t272 = 2mA

Significance: The net force is constant and independent of time. This perfectly
aligns with the classical physics of Free Fall, where 2A represents the
gravitational acceleration (g), and the net force is the object's weight (W = mg).
4.2Constant Jerk Systems (n = 3)

In engineering applications where acceleration changes at a constant rate (known
as "Jerk"), the displacement follows a cubic function s(t) = At®.

Substituting n = 3 yields:

ZF — 6mAt

Significance: This describes systems where the required force must increase
linearly with time, such as in the launch phase of high-speed elevators or
advanced propulsion systems designed to minimize mechanical stress.
4.3Sub-linear Dynamics and Deceleration (0 <n <1)

For indices between 0 and 1, the formula describes motion where the velocity
decreases over time.

Significance: This is highly applicable in Fluid Dynamics and the study of
particles moving through high-viscosity mediums. The formula provides a direct
method to calculate the "Retarding Force™ without complex differential
modeling.

Table 1: Summary Table for the applications
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Resulting Net
: : Power force -
Motion Regime index (n) Z i Physical example
Static Equilibrium n=0 0 Object at rest
Uniform Motion n=1 0 Constant velocity
U”'fo”‘? n=2 2mA (constant) Free fall
Acceleration
Variable _ . Constant Jerk
Acceleration n=3 SMAL (Linear) Motion

5. Comparative Analysis of Analytical Efficiency
To demonstrate the practical advantage of the proposed general equation, a
comparison is conducted between the traditional Newtonian derivation and the
proposed direct method.
5.1The Traditional Procedural Burden
In the classical approach, the transition from a displacement function
s(t) = At" to the net force ) F requires a two-step differential operation:
1. First Differentiation: Calculating instantaneous velocity,

ds
v(t) = Frie nAt"1
2. Second Differentiation: Calculating instantaneous acceleration,

dv
a(t) = Fre n(n — 1)At" 2
3. Application of Mass: Multiplying by mass to find ), F=ma(t).
This sequential process increases the likelihood of algebraic errors, especially in
complex or high-order power functions.

5.2 The Proposed Direct Pathway

The proposed formula Y F = mAn(n — 1)t™ 2 bypasses these intermediate
stages. It allows for a single-step mapping from the displacement parameters (A,
n) directly to the dynamic resultant force.

Table 2: Efficiency Comparison between Methods
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Feature

Traditional Newtonian
Method

Proposed Direct
Method

Operational Steps

Three distinct stages (v, a, F)

Single-step operation

Mathematical Tool

Double differentiation

Direct coefficient
substitution

Error Probability

Moderate (due to sequential

Minimal

steps) (direct calculation)
Computational . Hl_gher : Optimized
Time (requires _mtermedlate (direct output)
variables)
Fragmented Unified
Pedagogical Clarity -fag : (Displacement to
(velocity vs. acceleration) Force)

6. Conclusion

This study has successfully introduced a direct analytical formulation for deriving
net force from instantaneous displacement equations, effectively bypassing the
traditional, multi-step differentiation process. By establishing the general
equation Y F = mA,,(n — 1)t™ 2, we have provided a tool that enhances both
computational speed and analytical accuracy across various physical states.

As demonstrated in our comparative analysis, this approach significantly reduces
the procedural burden and minimizes potential algebraic errors. Integrating
kinematics and dynamics remains a central challenge in physics pedagogy,
necessitating more unified mathematical tools like the one proposed in this study
[8].

This consolidated framework not only simplifies the transition between kinematic
descriptions and dynamic causes but also offers a more intuitive pathway for
students and researchers alike. Future work could explore the integration of this
direct method into automated physical simulation software to further optimize
dynamic modeling.
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