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Abstract:

Image compression represents a fundamental application of data compression techniques
within the field of digital image processing. As digital images contain vast amounts of
information, there is a critical need for efficien t methods to store and transmit large data
volumes. This research explores the Singular Value Decomposition (SVD) algorithm as a
robust mathematical framework for achieving image compression by leveraging low-rank
matrix approximations. The primary objective is to implement the SVD algorithm and evaluate
its performance based on specific metrics, namely Peak Signal-to-Noise Ratio (PSNR) and
Mean Square Error (MSE). The study provides a detailed investigation into the trade-off
between the compression ratio and the resulting image quality. Methodologically, the SVD
process factorizes an image matrix A into three distinct components: U, S, and V™. By retaining
only, the first r singular values—which contain the maximum signal energy—the algorithm
can effectively reconstruct an approximation of the original image using significantly less
storage space. Experimental simulations were conducted using MATLAB on various test
images, including grayscale (such as Lena and Baboon) and full-color RGB images. Results
demonstrate that image clarity improves as more singular values are reintroduced. For a 256 *
256 grayscale image, a close resemblance to the original was achieved using only 90 singular
values, yielding a PSNR of 37.42 dB. In color images, the process involves decomposing the
red, green, and blue saturation matrices separately before recombination. The findings confirm
that while higher rank values increase image fidelity, they simultaneously reduce the
compression ratio. Ultimately, SVD is shown to be a stable and effective numerical method
for splitting data into signal and noise subspaces, providing a practical solution for modern
digital communication requirements.

Keywords: Singular Value Decomposition, Image Processing, Image Compression, SVD,
PSNR, MSE.
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Introduction
One of the main challenges associated with digital images is the presence of excessive
redundant and irrelevant information stored along with each captured picture. Many images
suffer from issues such as blurriness, fading, and noise, which degrade quality and increase
storage requirements. Technically, this unwanted information is referred to as noise, defined
as data that is irrelevant or meaningless in the context of the image.
Image compression is a technique designed to efficiently encode digital images by reducing
the number of bits required for their representation. With the advancement of digital
technology, there has been a growing demand for high-efficiency compression techniques,
especially since many of the traditional algorithms are computationally intensive and block-
based in execution [3].
Visual information plays a critical role in modern communication systems. Applications such
as high-definition television (HDTV), video conferencing, medical imaging, wireless video
transmission, virtual reality, video telephony, and video servers all rely heavily on efficient
image compression. As the number of users and the resolution of content increases, the amount
of visual data to be transmitted or stored grows significantly, placing a substantial burden on
channel bandwidth and storage capacity. Despite improvements in transmission and storage
technologies, the cost of supporting high-capacity systems rises sharply with increased
demand.
Compression techniques are essential in addressing these limitations, as they allow for
significant reduction in data rates while preserving the perceptual quality of the image or video.
Effective compression exploits redundancies inherent in image data. These include:

1. Spatial redundancy: arises from correlations among neighboring pixels.

2. Spectral redundancy: results from correlations between different color channels or

bands.
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3. Temporal redundancy: occurs in video sequences due to similarities between
consecutive frames.

Temporal redundancy, in particular, can be addressed using interframe coding techniques such
as Motion Compensated Predictive Coding (MCPC) [2].
Over the years, numerous image and video compression algorithms have been developed, some
of which have become widely adopted international standards. Examples include JPEG,
MPEG, H.261, and H.263, each offering different trade-offs between compression ratio,
computational complexity, and output quality [1].
Singular Value Decomposition (SVD) is widely recognized as an optimal matrix factorization
technique in the least squares sense, concentrating the maximum signal energy into the fewest
possible coefficients [1], [2]. It is a stable and powerful numerical method used to decompose
a matrix into a set of linearly independent components, each representing a portion of the
system’s energy. In the field of numerical analysis, SVD is commonly employed for matrix
diagonalization [3], [4].
Due to its numerous advantages, SVD has become a highly attractive algebraic tool in image
processing applications. Among its most notable features are its energy compaction capability,
which is particularly useful in image compression [5], [6], and its ability to separate data into
two orthogonal subspaces: the signal (information) subspace and the noise subspace [6], [7],
[8]. This property has been successfully applied not only in compression but also in noise
filtering and digital watermarking applications [9], [6].
The main objective to implement image compression algorithm based on SVD algorithm and
evaluate the performance of this algorithm in terms of PSNR and MSE.

SVvD

SVD is an approach of advanced linear algebra [14]. It is based on the packing the maximum
energy of a signal into a lesser number of coefficients. It is an effective method to split a matrix
into linearly independent constituents where each constituent has its own contribution in terms
of energy. The uses of SVD are diverse ranging from areas such an image processing, latent
semantic analysis, approximation of the pseudo inverse of a matrix, least square minimization
of a matrix, efficient medical imaging, topographical analysis, watermarking schemes and
many other areas. In the case of image compression, SVD offers its advantage in the form of
its sensitivity to local adaptations in the statistics of an image. The core mathematical
foundations of SVD can be summarized as factorizing a matrix A into three components U,
known as the matrix of rows, S called the diagonal matrix or the singular values of A and V is
called the matrix of columns. These factors of the matrix satisfy the relation A = U*S*VT,

For a given Matrix A of size mxn the output of SVD has the following components.
U: a matrix of dimension m X m .

S: the diagonal matrix of dimension m X n,

V: amatrix of dimension n x n and V' represents the transpose of the matrix V.

The orthogonal matrices U and V are not the same — since A need not be square, U and V
need not even have the same dimensions. The columns of U are left singular vectors of A. The
columns of V (that is, the rows of VVT) are right singular vectors of A. The entries of S are the
singular values of A. Thus, with each singular vector (left or right) there is an associated
singular value. The “first” or “top” singular vector refers to one associated with the largest
singular value, and so on [15,16]. See Fig.1.
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figl: The singular value decomposition (SVD).

SVD in Image Compression:

The objective of image compression is to represent an image with lesser amount of data than
what an image is composed of and the ability to reconstruct the image from its smaller
representation [16]. This improves the storage efficiency of an image and also greatly reduces
the amount of data that is required to transmit the image across computers. However, the image
formed from its compressed image by an image processing algorithm may or may not be able
to recreate the exact copy of original image. A compression technique can be lossy or lossless
based on the quality of image it restores. A lossless compression scheme can reconstruct the
exact copy of an image whereas a lossy scheme can recreate the image with some data loss,
depending on the compression technique used. We have used SVD as lossy image compression
scheme. The other methods for image compression are discrete wavelet transform, discrete
cosine transform, Karhunen-Lohve transform, and combinations of these. The reason why we
have used singular value decomposition because it is basic, simple and works almost for all
kind of matrix and it is well suited for image compression [20,21]. As images are stored in the
form of matrices in the computer memory, it is imperative to think an image as a matrix.
Depending on amount of type of image, colored or grayscale, the space required to store an
image depends on the dimension of the image. A grayscale image has the space requirement
of mxn where m and n denote the height and the width of the image whereas a colored image
has the space requirement of m X n X 3, as there are 3 matrices of m X n each representing
the colors red, green and blue commonly known as the RGB image. From the properties of
SVD it follows that a matrix A can be represented in the form of its SVD components as a sum
of rank 1 matrices of the form:

A= U1*S; *ViT + U*So*Vo T Un* Sn*V, T

In the above relation, it is worth mentioning that the value of S1> S>> S3>....Sh. The above
relation also implies that, the contribution of the first component of the sum would be highest
while the contribution of the last component would be lowest. Thus, it follows that if we
consider only the first r members of the above summation, we can still get a considerable
approximation of A. This is the property used for SVD based image compression. The relation
for the compression of an image considering the first r singular values can be show to be:

r= Ur*St*Va T+ Uo* So*Vo T Un* SV, T

Here A represents the approximation of the image based on the first r singular values of the
singular matrix S. Thus, instead of storing the matrix A of size m X n, we can store the matrices
Unmxr, Vnxr and the singular vector Sy and reconstruct the image as: Ar = Umxr *S*V k. Thus, it
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leads to a reduction in the amount of space needed to store the image and the space complexity
of the compressed image would be given by Ar=r (m +n + 1) [22,23].

Depending on the value r of the rank of SVD selected, we can get a compression ratio that
would be defined as:

m+*n

r r(m+n+1)

Mean square error (MSE):
MSE = =%(0;; - R;;)"
=—%(0i; — Ryj)

where O represents the original image and R represents the reconstructed image of dimension
m™*n.

Peak signal to noise ratio:
(PSNR) = 10 log (255*/MSE)
Mathematical Example of SVD.

Now we will get into the math and theory computing of the SVD. We will go through an
example to solve the equation A = UZVT

. B 2 2
Given A= 5 3 _2]
The first thing we need to find in this computation is the matrix AAT. The superscript T stands

for “transpose” which to put nicely, you flip the matrix on its side, row one becoming column
one. In order to find U, we have to start with AAT.

3 2
The transpose of A is AT = [2 3 ]
2 =2

A4t :[187 187]
The characteristic polynomial is
det (AAT -\ 1) = A% — 341 +225 = (A —25)( A-9),
For AAT L =259
The singular values are
0, =v25=5and 6, =9 =3.

Now we find the right singular vectors (the columns of V) by finding an orthonormal set of
eigenvectors of AT A. It is also possible to proceed by finding the left singular vectors (columns
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of U) instead. The eigenvalues of ATA are 25, 9, and 0, and since ATA is symmetric we know
that the eigenvectors will be orthogonal.

ATA =

3 2 13 12 2
3 2 21
2 _32] 3 _2]—[12 13 —2]

2 2 -2 8
13 12 2 1 0 O
12 13 =2({—A(0 1 O
0

2 -2 8 0 1
13 -2 12 2
=| 12 13—-2 -2
2 -2 8 —

For ATA A=25,9,0.

For A =25, we have
—-12 12 2
ATA — 251=|12 —-12 -2

2 -2 =17
—-12 12 2 0
[ 12 —-12 -2 ] [vl] = [0]
2 -2 =17 0
1 -1 0
Which row-reduces to [0 0 1].A unit-length vector in the kernel of that matrix
0 0 O
1
i
7 =1 normalized — v, =1
0 V2
0

For A =9 we have

4 12 2 10 -
AAT —91=[12 4 —=2|.Which row-reduces to 0 1
2 -2 -1

O alr IR

0 0

1 1/V18
v, = [—1] normalized — A unit-length vector in the kernel is v, =|—1/4/18
4

4/V18

2/3

For the last eigenvector, we have: normalized - v4 =[—2/3]

~1/3
w2z N2 23
V=11//18 -1//18 -2/3
2/3  -2/3 -1/3

5 0 0 1N2 12 0

So,atthispointweknowthatA:UZVT:U[O 3 0] 1/V18 —1/V/18 4//18

2/3 =2/3 -1/3

115 | Copyright: © 2026 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative
Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).



Finally, we can compute U by the formula cu; = Av;, or u; = %Aui'

o (12 12 o -
This gives U—L/\/Z 12 . So, inits full glory the SVD is:
V2 12 0
W2 N2 o ol Y
A= UZ'VT:L;\/Z _1//\/21 0 3 o] 1/V18 -1/V18 4/V18

2/3 -2/3 -1/3

Results and Discussion

we evaluated the performance of SVD algorithms that were implemented in MATLAB. The
studied algorithm is applied on several test images with different singular values (ranks). The
results of the meticulous simulation for the images are presented and compared in terms of
(MSE, PSNR, and CR).

Grayscale image compression using (SVD) with different ranks

The process of SVD can be used for compress images to conserve storage space by removing
the singular values that contribute the least to the information contained in the image matrix.
For this simulation, we choose grayscale image, as shown in Fig.2. We design MATLAB code
to load an image, and isolate the corresponding saturation matrix, and then modify the matrix
based on its singular values. As an example, we use a high-contrast grayscale image. We
consider the individual saturation levels of each pixel in the original image as the numerical
entries in a matrix. We compute the SVD of that matrix and remove the singular values (from
smallest to largest), converting the modified matrices (with removed values) back into a series
of images. This process of decomposition can reduce the image storage size without losing the
quality needed to fully represent the image. In Fig.2. we can see that as more singular values
are included in the image matrix; the clarity of the image improves. The original image has
approximately 256 singular values, but we were able to see a close resemblance to the original
image using only 90 singular values. The amount of storage space is not as significant in our
example here as it would be in practice, because of our emphasis on image clarity. Our current
process is to compress while still retaining the original number of pixels in order to show the
details of the loss of image quality. In practice, we would see a more significant change in
storage of an image if we allowed the overall image size (the number of pixels) to reduce as
we removed the small singular values. In Fig.4, Table.1, we can see the amount of error is
increased when the values of singular values (rank) are decreased. We observe the positive
concavity of the error curve, which indicates that as the error decreases, the rate of change of
the error loss (MSE) also decreases. This means that the rate of change of the error loss is less
significant as more singular values are used. Here we see that the sharp negative slope that
happens at approximately 30 singular values corresponds with the blurry images (SNR=28 dB,
CR=4.25) for image size (256x256) that was shown in Fig.2b and (SNR=30 dB, CR=8.5). As
we continue to reintroduce a greater number of singular values, we can see the quality of the
image increase (SNR=37.4 dB, CR=1.4) as shown in Fig.2c, but we can see almost as many
details with 90 singular values as we could see with the original 256sv Graph in Fig.3 show the
variation of compression with different singular values (rank), and the relationship between the
compression ratio (CR) and the number of singular values (rank) are inversely proportional to
each other.

116 | Copyright: © 2026 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative
Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).



a. Original image(R=256)

R o T -

b. Compressed image (R=30)

c. Compressed image (R=90)
Figure.2: Grayscale image (256x256) compression with different ranks
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Table.1: Grayscale image (256x256) compression with different ranks

Ran Size PSNR
K CR (pixel) Error MSE (dB)
30 | 42583 | 15300 | NI 970618 | 282603
60 | 21292 | 30780 1'910864X1 202721 | 33.4663
00 | 14194 | 46170 0'770150” 11,7652 | 37.4248
120 | 1.0646 | 61560 0'320%1” 5.0216 | 41.1224
150 | 0.8517 | 76950 0'130%1X1 1.9855 | 451521
180 | 0.7097 | 92340 0'040%5” 0.6486 | 50.0113
210 | 0.6083 | 107730 0'000863X1 0.1267 | 57.1020
240 | 05323 | 123120 0'000%3” 0.0041 | 71.9730
45
4 L i
35 r .
o 3r T
S25¢ 1
5
(4] 1 _5 - -
‘1 - -
05 —————
0 : . : . !
0 50 100 150 200 250 300
Number of Singular Values used

Fig.3. Variation of Compression with Rank
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Fig.4. Variation of Error with Rank

o

Grayscale image compression using (SVD) with the same rank

We have taken four different images of the same sizes (512). The images are gray scale images,
SVD is performed on them. The performance of SVD in these images vary based on the type
of image. Four images that have been considered here are Birds (512x512), Lena (512x512),
Baboon (512x512), and Scene (512x512). The accuracy of the image compression and
reconstruction quality is measured by the PSNR and the Mean Square Error.

PSNR has been computed considering the maximum value of a pixel to be 255 in gray scale.
A higher value for PSNR indicates a better reconstruction of the image. Tables 2, 3, 4, and 5
tabulate the image compression achieved through SVD for different rank values and its
corresponding graph is shown in the Fig 5.

6. 107 Error in compression

a birds-512
=216 lena-512 7
E ~+— Scene-512
"'_,2 14 - baboon-512 | <
=)
S 12 F N -
=
=
[~
B 10F ' 1
o
-
s 8 ~ 1
= .
S :
= 6 .
ay
ax
= a i
=
§ > T .
LI‘:I I

o ) . ) ; ) ;

10 20 30 40 50 60 70 380

Number of Singular Values(rank)
Fig. 5. Error of different images at the same rank.
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Table 2. Results of compressed image (Lena) with SVD.

Test image Rank | Compression | Error | MSE PSNR
Lena ratio
10 25.5750 9.773 | 372.8268 | 22.4157
e+07
30 8.5250 3.226 | 123.0864 | 27.2287
e+07
50 5.1150 1.637 | 62.4584 | 30.1749
e +07
70 3.6536 0.944 | 36.0199 | 32.5654
e+07
90 2.8417 0.584 | 22.2886 | 34.6500
e+07

Table 3. Results of compressed image (baboon) with SVD.

baboon Ran | Compressio | Error MSE PSNR
k n ratio
10 25.5750 1.7672e | 674.1172 |19.843
+08 4
30 8.5250 1.2028e | 458.8475 | 21.514
+08 1
50 5.1150 0.8693e | 331.6044 | 22.924
+08 6
70 3.6536 0.6409% | 244.4683 | 24.248
+08 6
90 2.8417 0.4766e | 181.8213 | 25.534
+08 4
Table 4. Results of compressed image (birds) with SVD.
Birds Rank | Compression | Error MSE PSNR
ratio
10 25.5750 5.1908e+07 | 198.0114 | 25.1639
30 8.5250 1.6216e+07 | 61.8587 | 30.2168
50 5.1150 0.8078e+07 | 30.8160 | 33.2430
70 3.6536 0.4688e+07 | 17.8835 | 35.6063
90 2.8417 0.2971e+07 | 11.3320 | 37.5877
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Table 5. Results of compressed image (Scene) with SVD

Rank | Compression | Error MSE PSNR
ratio

10 25.5750 1.3682e+08 | 521.9233 | 20.9547

30 8.5250 0.5308e+08 | 202.4765 | 25.0671

50 5.1150 0.2888e+08 | 110.1835 | 27.7096

70 3.6536 0.1770e+08 | 67.5061 | 29.8374

90 2.8417 0.1183e+08 | 45.1218 | 31.5869

Implementation to full color images using (SVD)

We have demonstrated compression for a grayscale image, now we will expand this process to
full color images. For this simulation we chose a full color detailed image, Colored images
have the same application for image compression, but it requires a few more calculations. The
difference between a grayscale image and a colored image is that we need to store 3 bytes of
information per pixel rather than 1 byte per pixel. This is because the red, green, and blue pixel
values are now different rather than the same, so we have to represent each individually. First,
we need to take a colored image, and split it into three new images, a red-scale, green-scale,
and blue-scale image. We can treat the red-scale, green-scale, and blue-scale images just like
we did with the grayscale image. This time the values 0 through 255 on our table represent
only the saturation of that particular color. We can compute the SVD computation on each of
these images separately, and then combine them back together to create our colored image. As
we compute the SVD and only reintroduce specific singular values, we see the image quality
increase. With only 10 singular values (rank=10), we have a very good idea of what we’re
looking at and we can recognize the compressed image from the original image. As singular
values are increased to (rank= 90), we are able to see the image more clearly and very close to
original. To compute the image sizes again, we have to add the matrix three times instead of
just once as in a grayscale image. The error is a little more difficult to plot, as the graph would
be three dimensional, since the image has three layers. The error for full color images is more
complex to observe than the error corresponding to a grayscale image, due to the fact that we
separated the color image into three separate color saturation matrices and the error of these
three components is presented in Tables 6 and 7. The error curves in Fig.6 and 7 represent the
accumulated error when comparing each modified color saturation matrix to the corresponding
color saturation matrix from the original image. We can again observe a significant change in
sharpness from the compressed images using relatively few singular values. In addition to
reducing the apparent error by adding more singular values, we also notice a significant
difference between the error curves within each pixel color.
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Table 6. Error of the color image components (Red, Green and Blue)

Error between compressed and original components

—_—

Error
Rank CR Red comp | Greencomp | Blue comp
10 38.3813 8.4737e+07 | 1.8133e+08 | 9.6511e+07
30 12.7938 2.7402e+07 | 0.4785e+08 | 2.6735e+07
50 7.6763 1.4954e+07 | 0.2296e+08 | 1.3955e+07
70 5.4830 0.9909e+07 | 0.1424e+08 | 0.9240e+07
[t 2,
peppers 512x1536 | g 42646 | 0.7214e+07 | 0.0979e+08 | 0.6750e+07
o 108
1.6 -
1.4 -
1.2 -

1
10 20

1 1
30 40
MNumber of Singular Values used(rank)

1 I
50 60

I
7O

1
30 Q90

figure 6 — Error curves for the red, green, and blue pixel saturation levels from the
peppers image.
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Table 7. Error of the color image components (Red, Green and Blue)

Fruits Rank | CR Error
Red comp | Green comp | Blue
comp
10 36.5533 | 3.8613e+0 | 5.1176e+07 | 1.0640e+
7 08
30 12.1844 | 1.3167e+0 | 2.1119 e+07 | 0.5281e+
7 08
50 7.3107 |0.7322e+0 | 1.1789e+07 | 0.3063e+
7 08
- 70 5.2219 |0.4374e+0 | 0.6844e+07 | 0.1845e+
480 x1536 14 08
90 40615 | 0.2699e+0 | 0.4073e+07 | 0.1131e+
7 08

12

Red component
Green component
Blue component

A
(e}

Error between compressed and original components

(o]

1 1 1
10 20 30 40 50 60 70 80 90
Number of Singular VValues used(rank)

Figure 7— Error curves for the red, green, and blue pixel saturation levels from the fruits
image.

Conclusion

By applying the process of Singular VValue Decomposition to images, we have isolated the least
important pieces of information that are stored in the images and have removed them
methodically, leaving only the most important components of the images. This process of
removing the smallest singular values from the saturation matrices allows us to retain as much
of the image quality as possible. The approach applied to a gray scale image and also the
colored images (RGB matrices). The performance of SVD varies depending on the type of
image being compressed and also depending on the number of singular values (rank). The
quality of the reconstructed image increases with high rank values but it results in lesser
compression. Singular Value Decomposition (SVD) is a simple, robust and reliable technique.
This SVD technique provides stable and effective method to split the image matrix into a set
of linearly independent matrices. SVD provides good compression ratio and also a practical
solution to image compression problem. The results clearly display the compressed outputs for
different rank (r) values. Thus, selection of r value plays a crucial role in this SVD based image
compression technique.
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