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Abstract:  

Image compression represents a fundamental application of data compression techniques 

within the field of digital image processing. As digital images contain vast amounts of 

information, there is a critical need for efficien t methods to store and transmit large data 

volumes. This research explores the Singular Value Decomposition (SVD) algorithm as a 

robust mathematical framework for achieving image compression by leveraging low-rank 

matrix approximations. The primary objective is to implement the SVD algorithm and evaluate 

its performance based on specific metrics, namely Peak Signal-to-Noise Ratio (PSNR) and 

Mean Square Error (MSE). The study provides a detailed investigation into the trade-off 

between the compression ratio and the resulting image quality. Methodologically, the SVD 

process factorizes an image matrix A into three distinct components: U, S, and VT. By retaining 

only, the first r singular values—which contain the maximum signal energy—the algorithm 

can effectively reconstruct an approximation of the original image using significantly less 

storage space. Experimental simulations were conducted using MATLAB on various test 

images, including grayscale (such as Lena and Baboon) and full-color RGB images. Results 

demonstrate that image clarity improves as more singular values are reintroduced. For a 256 * 

256 grayscale image, a close resemblance to the original was achieved using only 90 singular 

values, yielding a PSNR of 37.42 dB. In color images, the process involves decomposing the 

red, green, and blue saturation matrices separately before recombination. The findings confirm 

that while higher rank values increase image fidelity, they simultaneously reduce the 

compression ratio. Ultimately, SVD is shown to be a stable and effective numerical method 

for splitting data into signal and noise subspaces, providing a practical solution for modern 

digital communication requirements. 
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 الملخص

الرقمية الصور  معالجة  مجال  في  البيانات  لتقنيات ضغط  أساسياً  تطبيقاً  الصور  لأن   .يعد ضغط  ونظراً 

ماسة لطرق فعالة لتخزين ونقل أحجام  الصور الرقمية تحتوي على كميات هائلة من المعلومات، تبرز حاجة  

كإطار رياضي قوي لتحقيق   (SVD) يستكشف هذا البحث خوارزمية تحليل القيم المفردة .البيانات الكبيرة

الرتب   ذات  المصفوفات  تقريب  استغلال  الصور من خلال  الهدفالمنخفضةضغط  تنفيذ   .  الأساسي هو 

 (PSNR) محددة، وهي ذروة نسبة الإشارة إلى الضجيجوتقييم أدائها بناءً على مقاييس   SVD خوارزمية

الخطأ مربع  الصورة   .(MSE) ومتوسط  وجودة  الضغط  نسبة  بين  للمفاضلة  دقيقاً  تحليلاً  الدراسة  تقدم 

 :مكونات متميزة   ثلاث إلى   Aبتحليل مصفوفة الصورة   SVD من الناحية المنهجية، تقوم عملية .الناتجة

 U و S  و .TV  ومن خلال الاحتفاظ بأول r  والتي تحتوي على أقصى طاقة للإشارة   -من القيم المفردة فقط

أجُريت محاكاة  .يمكن للخوارزمية إعادة بناء تقريب للصورة الأصلية باستخدام مساحة تخزين أقل بكثير  -

تدرج الرمادي  على صور اختبار مختلفة، بما في ذلك الصور ذات ال MATLAB تجريبية باستخدام برنامج

أظهرت النتائج أن وضوح الصورة يتحسن مع .RGB )مثل لينا وبابون( والصور الملونة بالكامل بنظام

، تم تحقيق تشابه كبير مع  256 * 256بالنسبة لصورة رمادية بحجم   .زيادة عدد القيم المفردة المستخدمة

باستخدام   الأصلية  نسبة  90الصورة  أعطى  مما  فقط،  مفردة  وفي   .ديسيبل  37.42بلغت   PSNR قيمة 

الصور الملونة، تتضمن العملية تحليل مصفوفات تشبع الألوان الأحمر والأخضر والأزرق بشكل منفصل  

وتؤكد النتائج أنه بينما تزيد قيم الرتب العالية من دقة الصورة، فإنها تقلل في الوقت  .  قبل إعادة تجميعها

البيانات إلى  SVD أثبتت وفي الختام،   .نفسه من نسبة الضغط أنها طريقة عددية مستقرة وفعالة لفصل 

 . مساحات فرعية للإشارة والضجيج، مما يوفر حلاً عملياً لمتطلبات الاتصالات الرقمية الحديثة

 

 .SVD ،PSNR ،MSEتحليل القيم المفردة، معالجة الصور، ضغط الصور،  الكلمات المفتاحية:

Introduction 

One of the main challenges associated with digital images is the presence of excessive 

redundant and irrelevant information stored along with each captured picture. Many images 

suffer from issues such as blurriness, fading, and noise, which degrade quality and increase 

storage requirements. Technically, this unwanted information is referred to as noise, defined 

as data that is irrelevant or meaningless in the context of the image. 

Image compression is a technique designed to efficiently encode digital images by reducing 

the number of bits required for their representation. With the advancement of digital 

technology, there has been a growing demand for high-efficiency compression techniques, 

especially since many of the traditional algorithms are computationally intensive and block-

based in execution [3]. 

Visual information plays a critical role in modern communication systems. Applications such 

as high-definition television (HDTV), video conferencing, medical imaging, wireless video 

transmission, virtual reality, video telephony, and video servers all rely heavily on efficient 

image compression. As the number of users and the resolution of content increases, the amount 

of visual data to be transmitted or stored grows significantly, placing a substantial burden on 

channel bandwidth and storage capacity. Despite improvements in transmission and storage 

technologies, the cost of supporting high-capacity systems rises sharply with increased 

demand. 

Compression techniques are essential in addressing these limitations, as they allow for 

significant reduction in data rates while preserving the perceptual quality of the image or video. 

Effective compression exploits redundancies inherent in image data. These include: 

1. Spatial redundancy: arises from correlations among neighboring pixels. 

2. Spectral redundancy: results from correlations between different color channels or 

bands. 
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3. Temporal redundancy: occurs in video sequences due to similarities between 

consecutive frames. 

Temporal redundancy, in particular, can be addressed using interframe coding techniques such 

as Motion Compensated Predictive Coding (MCPC) [2]. 

Over the years, numerous image and video compression algorithms have been developed, some 

of which have become widely adopted international standards. Examples include JPEG, 

MPEG, H.261, and H.263, each offering different trade-offs between compression ratio, 

computational complexity, and output quality [1]. 

Singular Value Decomposition (SVD) is widely recognized as an optimal matrix factorization 

technique in the least squares sense, concentrating the maximum signal energy into the fewest 

possible coefficients [1], [2]. It is a stable and powerful numerical method used to decompose 

a matrix into a set of linearly independent components, each representing a portion of the 

system’s energy. In the field of numerical analysis, SVD is commonly employed for matrix 

diagonalization [3], [4]. 

Due to its numerous advantages, SVD has become a highly attractive algebraic tool in image 

processing applications. Among its most notable features are its energy compaction capability, 

which is particularly useful in image compression [5], [6], and its ability to separate data into 

two orthogonal subspaces: the signal (information) subspace and the noise subspace [6], [7], 

[8]. This property has been successfully applied not only in compression but also in noise 

filtering and digital watermarking applications [9], [6]. 

The main objective to implement image compression algorithm based on SVD algorithm and 

evaluate the performance of this algorithm in terms of PSNR and MSE. 

 

SVD 

SVD is an approach of advanced linear algebra [14]. It is based on the packing the maximum 

energy of a signal into a lesser number of coefficients. It is an effective method to split a matrix 

into linearly independent constituents where each constituent has its own contribution in terms 

of energy. The uses of SVD are diverse ranging from areas such an image processing, latent 

semantic analysis, approximation of the pseudo inverse of a matrix, least square minimization 

of a matrix, efficient medical imaging, topographical analysis, watermarking schemes and 

many other areas. In the case of image compression, SVD offers its advantage in the form of 

its sensitivity to local adaptations in the statistics of an image. The core mathematical 

foundations of SVD can be summarized as factorizing a matrix A into three components U, 

known as the matrix of rows, S called the diagonal matrix or the singular values of A and V is 

called the matrix of columns. These factors of the matrix satisfy the relation A = U*S*VT.  

 

For a given Matrix A of size m×n the output of SVD has the following components.  

U: a matrix of dimension 𝑚 × 𝑚 . 

S: the diagonal matrix of dimension 𝑚 × 𝑛,  

V: a matrix of   dimension 𝑛 × 𝑛  and VT represents the transpose of the matrix V. 

 

The orthogonal matrices U and V are not the same — since A need not be square, U and V 

need not even have the same dimensions. The columns of U are left singular vectors of A. The 

columns of V (that is, the rows of VT) are right singular vectors of A. The entries of S are the 

singular values of A. Thus, with each singular vector (left or right) there is an associated 

singular value. The “first” or “top” singular vector refers to one associated with the largest 

singular value, and so on [15,16]. See Fig.1.  
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fig1: The singular value decomposition (SVD). 

 

SVD in Image Compression: 

The objective of image compression is to represent an image with lesser amount of data than 

what an image is composed of and the ability to reconstruct the image from its smaller 

representation [16]. This improves the storage efficiency of an image and also greatly reduces 

the amount of data that is required to transmit the image across computers. However, the image 

formed from its compressed image by an image processing algorithm may or may not be able 

to recreate the exact copy of original image. A compression technique can be lossy or lossless 

based on the quality of image it restores. A lossless compression scheme can reconstruct the 

exact copy of an image whereas a lossy scheme can recreate the image with some data loss, 

depending on the compression technique used. We have used SVD as lossy image compression 

scheme. The other methods for image compression are discrete wavelet transform, discrete 

cosine transform, Karhunen-Lohve transform, and combinations of these. The reason why we 

have used singular value decomposition because it is basic, simple and works almost for all 

kind of matrix and it is well suited for image compression [20,21]. As images are stored in the 

form of matrices in the computer memory, it is imperative to think an image as a matrix. 

Depending on amount of type of image, colored or grayscale, the space required to store an 

image depends on the dimension of the image. A grayscale image has the space requirement 

of m×n where m and n denote the height and the width of the image whereas a colored image 

has the space requirement of 𝑚 × 𝑛 × 3,  as there are 3 matrices of 𝑚 × 𝑛 each representing 

the colors red, green and blue commonly known as the RGB image. From the properties of 

SVD it follows that a matrix A can be represented in the form of its SVD components as a sum 

of rank 1 matrices of the form: 

 

A= U1*S1 *V1
T + U2*S2*V2 

T…………Un* S n*Vn 
T           

 

In the above relation, it is worth mentioning that the value of S1> S2> S3>….Sn. The above 

relation also implies that, the contribution of the first component of the sum would be highest 

while the contribution of the last component would be lowest. Thus, it follows that if we 

consider only the first r members of the above summation, we can still get a considerable 

approximation of A. This is the property used for SVD based image compression.  The relation 

for   the compression of an image considering the first r singular values can be show to be: 

 

Ar = U1*S1 *V1
T + U2* S 2*V2 

T…………Un* Sr*Vr
T                                                                                     

 

Here Ar represents the approximation of the image based on the first r singular values of the 

singular matrix S. Thus, instead of storing the matrix A of size 𝑚 × 𝑛, we can store the matrices 

Umxr,Vnxr and the singular vector Sr and reconstruct the image as: Ar = Umxr *Sr*VT
nxr. Thus, it 
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leads to a reduction in the amount of space needed to store the image and the space complexity 

of the compressed image would be given by Ar = r (m + n + 1) [22,23].  

Depending on the value r of the rank of SVD selected, we can get a compression ratio that 

would be defined as:  

 

𝐶𝑟 =
𝑚∗𝑛

𝑟(𝑚+𝑛+1)
                                                                                                                        

 

Mean square error (MSE): 

     

𝑀𝑆𝐸 =
1

𝑚𝑛
∑(𝑂𝑖𝑗 − 𝑅𝑖𝑗)

2
   

 

where O represents the original image and R represents the reconstructed image of dimension 

m*n. 

 

Peak signal to noise ratio: 

  

(PSNR) = 10 log (2552/MSE) 

 

Mathematical Example of SVD. 

 

Now we will get into the math and theory computing of the SVD. We will go through an 

example to solve the equation 𝐴 = 𝑈Σ𝑉𝑇    

 

Given       𝐴 = [
3 2    2
2 3 −2

] 

 

The first thing we need to find in this computation is the matrix AAT. The superscript T stands 

for “transpose” which to put nicely, you flip the matrix on its side, row one becoming column 

one. In order to find U, we have to start with AAT.  

 

The transpose of A is             𝐴𝑇 = [
3 2
2 3
2 −2

] 

 

𝐴𝐴𝑇 =[
17 8
8 17

] 

 

The characteristic polynomial is  

 

det (𝐴𝐴𝑇 –λ I) = λ2 − 34λ +225 = (λ −25)( λ−9), 

 

For  𝐴𝐴𝑇        λ   = 25, 9 

 

The singular values are 

 

σ1 = √25 = 5 and σ2 = √9  = 3. 

 

Now we find the right singular vectors (the columns of V) by finding an orthonormal set of 

eigenvectors of 𝐴𝑇𝐴. It is also possible to proceed by finding the left singular vectors (columns 
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of U) instead. The eigenvalues of 𝐴𝑇𝐴  are 25, 9, and 0, and since 𝐴𝑇𝐴  is symmetric we know 

that the eigenvectors will be orthogonal. 

 

𝐴𝑇𝐴 = [
3 2
2 3
2 −2

] [
3 2    2
2 3 −2

] = [
13 12 2
12 13 −2
2 −2 8

] 

 

[
13 12 2
12 13 −2
2 −2 8

] − λ [
1 0 0
0 1 0
0 0 1

] 

 

= [
13 − λ 12 2

12 13 − λ −2
2 −2 8 − λ

] 

 

 

For 𝐴𝑇𝐴             λ = 25, 9, 0. 

 

For λ = 25, we have 

𝐴𝑇𝐴 −  25 I = [
−12 12 2
12 −12 −2
2 −2 −17

] 

[
−12 12 2
12 −12 −2
2 −2 −17

] [𝑣1] = [
0
0
0

] 

 

Which row-reduces to [
1 −1 0
0 0 1
0 0 0

] . A unit-length vector in the kernel of that matrix   

𝑣⃑1 = [
1
1
0

]           𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 →        𝑣⃑1 = [

1

√2
1

√2

0

] 

For λ = 9 we have 

  𝐴𝐴𝑇 – 9 I = [
4 12 2

12 4 −2
2 −2 −1

] . Which row-reduces to [

1 0 −
1

4

0 1      
1

4

0 0     0

] . 

𝑣⃑2 = [
1

−1
4

]       𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 →    A unit-length vector in the kernel is ʋ2 =[

1/√18

−1/√18

4/√18

] 

For the last eigenvector, we have:    𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 →    ʋ3 =[

2/3
−2/3
−1/3

]  

𝑉⃑⃑ =  [

1/√2 1/√2 2/3

1/√18 −1/√18 −2/3
2/3 −2/3 −1/3

] 

So, at this point we know that 𝐴= 𝑈𝛴𝑉𝑇 = 𝑈 [
5 0 0
0 3 0

] [

1/√2 1/√2 0

1/√18 −1/√18 4/√18
2/3 −2/3 −1/3

] 
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Finally, we can compute 𝑈 by the formula σ𝑢𝑖 = 𝐴ʋ𝑖, or 𝑢𝑖 =  
1

σ
𝐴ʋ𝑖.  

 

This gives  𝑈 =[
1/√2 1/√2

1/√2 −1/√2
] . So, in its full glory the SVD is: 

 

𝐴= 𝑈𝛴𝑉𝑇 = [
1/√2 1/√2

1/√2 −1/√2
] [

5 0 0
0 3 0

] [

1/√2 1/√2 0

1/√18 −1/√18 4/√18
2/3 −2/3 −1/3

] 

Results and Discussion 

we evaluated the performance of SVD algorithms that were implemented in MATLAB. The 

studied algorithm is applied on several test images with different singular values (ranks). The 

results of the meticulous simulation for the images are presented and compared in terms of 

(MSE, PSNR, and CR).  

 

Grayscale image compression using (SVD) with different ranks 

The process of SVD can be used for compress images to conserve storage space by removing 

the singular values that contribute the least to the information contained in the image matrix.  

For this simulation, we choose grayscale image, as shown in Fig.2. We design MATLAB code 

to load an image, and isolate the corresponding saturation matrix, and then modify the matrix 

based on its singular values. As an example, we use a high-contrast grayscale image. We 

consider the individual saturation levels of each pixel in the original image as the numerical 

entries in a matrix. We compute the SVD of that matrix and remove the singular values (from 

smallest to largest), converting the modified matrices (with removed values) back into a series 

of images. This process of decomposition can reduce the image storage size without losing the 

quality needed to fully represent the image. In Fig.2. we can see that as more singular values 

are included in the image matrix; the clarity of the image improves. The original image has 

approximately 256 singular values, but we were able to see a close resemblance to the original 

image using only 90 singular values. The amount of storage space is not as significant in our 

example here as it would be in practice, because of our emphasis on image clarity. Our current 

process is to compress while still retaining the original number of pixels in order to show the 

details of the loss of image quality. In practice, we would see a more significant change in 

storage of an image if we allowed the overall image size (the number of pixels) to reduce as 

we removed the small singular values. In Fig.4, Table.1, we can see the amount of error is 

increased when the values of singular values (rank) are decreased. We observe the positive 

concavity of the error curve, which indicates that as the error decreases, the rate of change of 

the error loss (MSE) also decreases. This means that the rate of change of the error loss is less 

significant as more singular values are used. Here we see that the sharp negative slope that 

happens at approximately 30 singular values corresponds with the blurry images (SNR=28 dB, 

CR=4.25) for image size (256×256   ( that was shown in Fig.2b and (SNR=30 dB, CR=8.5). As 

we continue to reintroduce a greater number of singular values, we can see the quality of the 

image increase (SNR=37.4 dB, CR=1.4) as shown in Fig.2c, but we can see almost as many 

details with 90 singular values as we could see with the original 256sv Graph in Fig.3 show the 

variation of compression with different singular values (rank), and the relationship between the 

compression ratio (CR) and the number of singular values (rank) are inversely proportional to 

each other.   
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a. Original image(R=256) 

 

b. Compressed image (R=30) 

 

 

c. Compressed image (R=90) 

Figure.2: Grayscale image (256×256) compression with different ranks 
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Table.1: Grayscale image (256×256) compression with different ranks 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.3. Variation of Compression with Rank 

Ran

k 
CR 

Size 

(pixel) 
Error MSE 

PSNR 

(dB) 

30 4.2583 15390 
6.3610×1

0-6 
97.0618 28.2603 

60 2.1292 30780 
1.9184×1

06 
29.2721 33.4663 

90 1.4194 46170 
0.7710×1

06 
11.7652 37.4248 

120 1.0646 61560 
0.3291×1

06 
5.0216 41.1224 

150 0.8517 76950 
0.1301×1

06 
1.9855 45.1521 

180 0.7097 92340 
0.0425×1

06 
0.6486 50.0113 

210 0.6083 107730 
0.0083×1

06 
0.1267 57.1020 

240 0.5323 123120 
0.0003×1

06 
0.0041 71.9730 
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Fig.4. Variation of Error with Rank 

 

Grayscale image compression using (SVD) with the same rank  

We have taken four different images of the same sizes (512). The images are gray scale images, 

SVD is performed on them. The performance of SVD in these images vary based on the type 

of image. Four images that have been considered here are Birds (512x512), Lena (512x512), 

Baboon (512x512), and Scene (512x512). The accuracy of the image compression and 

reconstruction quality is measured by the PSNR and the Mean Square Error.  

PSNR has been computed considering the maximum value of a pixel to be 255 in gray scale. 

A higher value for PSNR indicates a better reconstruction of the image. Tables 2, 3, 4, and 5 

tabulate the image compression achieved through SVD for different rank values and its 

corresponding graph is shown in the Fig 5. 

 

 
Fig. 5. Error of different images at the same rank. 
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Table 2.  Results of compressed image (Lena) with SVD.

 
 

Table 3. Results of compressed image (baboon) with SVD. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. Results of compressed image (birds) with SVD. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Test image 

Lena 

Rank Compression 

ratio 

Error MSE PSNR 

 

10 25.5750 9.773 

e+07 

372.8268 22.4157 

30 8.5250 3.226 

e+07 

123.0864 27.2287 

50 5.1150 1.637 

e +07 

62.4584 30.1749 

70 3.6536 0.944 

e+07 

36.0199 32.5654 

90 2.8417 0.584 

e+07 

22.2886 34.6500 

baboon Ran

k 

Compressio

n ratio 

Error MSE PSNR 

 

10 25.5750 1.7672e

+08 

674.1172 19.843

4 

30 8.5250 1.2028e

+08 

458.8475 21.514

1 

50 5.1150 0.8693e

+08 

331.6044 22.924

6 

70 3.6536 0.6409e

+08 

244.4683 24.248

6 

90 2.8417 0.4766e

+08 

181.8213 25.534

4 

Birds Rank Compression 

ratio 

Error MSE PSNR 

 

10 25.5750 5.1908e+07 198.0114 25.1639 

30 8.5250 1.6216e+07 61.8587 30.2168 

50 5.1150 0.8078e+07 30.8160 33.2430 

70 3.6536 0.4688e+07 17.8835 35.6063 

90 2.8417 0.2971e+07 11.3320 37.5877 
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Table 5. Results of compressed image (Scene) with SVD 

 

 

Implementation to full color images using (SVD) 

We have demonstrated compression for a grayscale image, now we will expand this process to 

full color images. For this simulation we chose a full color detailed image, Colored images 

have the same application for image compression, but it requires a few more calculations. The 

difference between a grayscale image and a colored image is that we need to store 3 bytes of 

information per pixel rather than 1 byte per pixel. This is because the red, green, and blue pixel 

values are now different rather than the same, so we have to represent each individually.  First, 

we need to take a colored image, and split it into three new images, a red-scale, green-scale, 

and blue-scale image. We can treat the red-scale, green-scale, and blue-scale images just like 

we did with the grayscale image. This time the values 0 through 255 on our table represent 

only the saturation of that particular color. We can compute the SVD computation on each of 

these images separately, and then combine them back together to create our colored image.  As 

we compute the SVD and only reintroduce specific singular values, we see the image quality 

increase. With only 10 singular values (rank=10), we have a very good idea of what we’re 

looking at and we can recognize the compressed image from the original image. As singular 

values are increased to (rank= 90), we are able to see the image more clearly and very close to 

original. To compute the image sizes again, we have to add the matrix three times instead of 

just once as in a grayscale image. The error is a little more difficult to plot, as the graph would 

be three dimensional, since the image has three layers. The error for full color images is more 

complex to observe than the error corresponding to a grayscale image, due to the fact that we 

separated the color image into three separate color saturation matrices  and the error of these 

three components is presented in Tables 6 and 7. The error curves in Fig.6 and 7 represent the 

accumulated error when comparing each modified color saturation matrix to the corresponding 

color saturation matrix from the original image. We can again observe a significant change in 

sharpness from the compressed images using relatively few singular values. In addition to 

reducing the apparent error by adding more singular values, we also notice a significant 

difference between the error curves within each pixel color. 

 

 

 

 

 Rank Compression 

ratio 

Error MSE PSNR 

 

10 25.5750 1.3682e+08 521.9233 20.9547 

30 8.5250 0.5308e+08 202.4765 25.0671 

50 5.1150 0.2888e+08 110.1835 27.7096 

70 3.6536 0.1770e+08 67.5061 29.8374 

90 2.8417 0.1183e+08 45.1218 31.5869 
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Table 6. Error of the color image components (Red, Green and Blue) 

 

 

 
figure 6 – Error curves for the red, green, and blue pixel saturation levels from the 

peppers image. 

 

 

 

 

 

 

peppers 512x1536 

Rank CR 

Error 

Red comp Green comp Blue comp 

10 38.3813 8.4737e+07 1.8133e+08 9.6511e+07 

30 12.7938 2.7402e+07 0.4785e+08 2.6735e+07 

50 7.6763 1.4954e+07 0.2296e+08 1.3955e+07 

70 5.4830 0.9909e+07 0.1424e+08 0.9240e+07 

90 4.2646 0.7214e+07 0.0979e+08 0.6750e+07 
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Table 7. Error of the color image components (Red, Green and Blue) 

Fruits  

 480 x1536  

        

Rank CR Error 

Red comp Green comp Blue 

comp 

10 36.5533 3.8613e+0

7 

5.1176e+07 1.0640e+

08 

30 12.1844 1.3167e+0

7 

2.1119 e+07 0.5281e+

08 

50 7.3107 0.7322e+0

7 

1.1789e+07 0.3063e+

08 

70 5.2219 0.4374e+0

7 

0.6844e+07 0.1845e+

08 

90 4.0615 0.2699e+0

7 

0.4073e+07 0.1131e+

08 

Figure 7– Error curves for the red, green, and blue pixel saturation levels from the fruits 

image. 

Conclusion  

By applying the process of Singular Value Decomposition to images, we have isolated the least 

important pieces of information that are stored in the images and have removed them 

methodically, leaving only the most important components of the images. This process of 

removing the smallest singular values from the saturation matrices allows us to retain as much 

of the image quality as possible. The approach applied to a gray scale image and also the 

colored images (RGB matrices).  The performance of SVD varies depending on the type of 

image being compressed and also depending on the number of singular values (rank). The 

quality of the reconstructed image increases with high rank values but it results in lesser 

compression. Singular Value Decomposition (SVD) is a simple, robust and reliable technique. 

This SVD technique provides stable and effective method to split the image matrix into a set 

of linearly independent matrices. SVD provides good compression ratio and also a practical 

solution to image compression problem. The results clearly display the compressed outputs for 

different rank (r) values. Thus, selection of r value plays a crucial role in this SVD based image 

compression technique. 
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