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Abstract:

This research addresses the critical gap between advanced diagnostic technologies and the
operational constraints of healthcare systems in resource-limited settings. Chronic Kidney
Disease (CKD) represents a growing global health burden, yet early detection remains a
challenge in underserved regions due to the high cost of specialized diagnostic tools. This study
presents a comparative evaluation of five prominent machine learning algorithms—Random
Forest, Gradient Boosting, Logistic Regression, Support Vector Machines (SVM), and
Decision Trees—to develop a high-precision diagnostic framework. Unlike conventional
models that rely on expensive parameters, this study prioritizes 12 low-cost, clinically relevant
biomarkers, such as serum creatinine, albumin levels, and hemoglobin, which are routinely
available in basic clinical laboratories. A key innovation of this research is the implementation
of a "Missing Indicator" preprocessing strategy, which transforms incomplete clinical data into
robust diagnostic features, ensuring the model remains functional in real-world environments
where data gaps are common. The experimental results demonstrate that the Random Forest
model achieved superior predictive performance, with an accuracy exceeding 99%,
outperforming both traditional classifiers and more complex architectures in terms of
sensitivity and computational efficiency. The study concludes that integrating machine
learning with routine, low-cost biomarkers can significantly democratize early CKD diagnosis,
providing a scalable and cost-effective solution for improving patient outcomes in developing
healthcare infrastructures. This framework offers a practical pathway for implementing
explainable Al tools that align with the economic realities of global health challenges.
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Introduction

Chronic Kidney Disease (CKD) constitutes a worldwide health crisis marked by the gradual
decline of renal function, impacting millions of people globally. Early clinical identification is
crucial, as prompt intervention is the key determinant in preventing disease development,
alleviating patient suffering, and enhancing long-term survival rates. Nonetheless, healthcare
clinicians in resource-constrained areas face significant institutional barriers in obtaining
prompt and precise diagnoses. The issues are exacerbated by a significant lack of advanced
laboratory facilities, limited diagnostic options, and a severe shortage of nephrology doctors
qualified to deliver specialized care. Despite the emergence of machine learning (ML) as a
disruptive force in automated disease prediction, a notable disparity persists between
algorithmic success and practical clinical use. Current research frequently emphasizes the
creation of intricate predictive models that require substantial, high-quality information and
significant computational resources to achieve optimal performance. As a result, these data-
intensive requirements make such models predominantly unsuitable in areas marked by
fragmented data infrastructure and constrained technical resources. This study tackles these
complex difficulties by developing a resilient machine learning architecture tailored for
resource-limited settings. Our methodology emphasizes a concise array of cost-effective,
widely available biomarkers with established clinical efficacy, in contrast to traditional
methods that depend on costly or specialized diagnostic markers. This study emphasizes
computing efficiency and a hardware-agnostic architecture to create a system that achieves
"gold-standard™ diagnostic accuracy despite limited or poor data. To understand the importance
of this approach, it is crucial to assess how prior diagnostic procedures have sought to balance
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complexity and accessibility. The following section provides a critical review of the existing
literature, highlighting the technological gaps in current CKD prediction models and
establishing the necessity for the efficient, high-performance architecture proposed in this
study.

Related work

The results of this research indicate a notable improvement in diagnostic accuracy compared
to the study by (Raihan et al., 2023). Although their XGBoost classifier achieved an impressive
accuracy of 99.16%, the Random Forest model developed in this study reached flawless
performance, with 100% accuracy and ROC-AUC. This advancement underscores a crucial
shift in emphasis from merely enhancing algorithmic complexity to tackling the essential
research gap related to practical clinical application and data limitations in settings with limited
resources. The study explicitly addresses significant constraints associated with real-world
implementation, directly confronting limitations that are frequently underrepresented in
previous model-centric research. These constraints include the dependence on advanced
missing-data imputation techniques, the intentional optimization of an economical biomarker
panel (approximately 15-20 USD), and the recognition of potential overfitting despite
achieving perfect metrics. This underscores the imperative need for external validation across
diverse populations to ensure generalizability.

This research (Tsai et al., 2023) utilized a large clinical dataset of 17,100 patients from medical
records in Thailand. Researchers studied several different machine learning models, including
the Random Forest model (which performed best), the IBK model, the Random Tree model,
the J48 model, and the Decision Table model. SMOTE was used to correct for data imbalances,
and SHAP was used to analyze the model. The Random Forest model outperformed the other
models, achieving the highest accuracy of 92.1%, along with excellent sensitivity and
precision. SHAP analysis confirmed the clinical relevance of the model by identifying serum
albumin, blood urea nitrogen (BUN), age, direct bilirubin, and glucose as key diagnostic
indicators, thus aligning the algorithm's output with clinical interpretability. Significance of
this study: This comprehensive study confirms the effectiveness of the Random Forest model,
which demonstrated superior performance in the current research. The identification of BUN
as a key indicator is consistent with the findings of the current study, which indicates that BUN
is a crucial indicator. The accuracy of the reported results (92.1%) is lower than that of this
study because the sample size is larger and the real-world data are more complex and noisier
than standard datasets. LIME's interpretation is a notable addition to this study.

The (Moreno-Sanchez, 2023) study developed an optimized XGBoost model using a tiny set
of features (only three: hemoglobin, urine specific gravity, and hypertension). Using clinical
and normative data, the researchers applied five-fold cross-validation to assess performance
and achieved exceptional model accuracy of 99.2% on training and optimization data and
97.5% on non-visual data. The order of interpretable analyses was hemoglobin first, followed
by specific gravity, then hypertension. Significance of the current study: This study is highly
consistent with current findings identifying hemoglobin as the most important predictor. The
compact model, using only three features and achieving high accuracy, supports the idea that
certain clinical features have very high predictive power. Identifying hypertension as an
important factor is consistent with the current study's findings, which indicate that blood
pressure is a supporting factor for classification. The use of XGBoost with interpretable
analysis reflects the methodology used in the current study.

The (Ghosh & Khandoker, 2024) study used a clinical dataset of 491 cases (56 with chronic
kidney disease and 435 without). The researchers compared five models: logistic regression,
random forest, decision tree, naive Bayes, and XGBoost. Both SHAP and LIME were applied
to interpret the models and understand the influencing factors at the individual level. XGBoost
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achieved the highest AUC of 0.9689 and an accuracy of 93.29%. SHAP and LIME analysis
indicated that the most important influencing features were creatinine, HbAlc (glycated
hemoglobin), and age. SHAP force plots were also used to provide individual interpretations
for each case. Relevance to the current study: This study confirms the superiority of the
XGBoost and Random Forest models, which is consistent with the current findings that showed
Random Forest and Gradient Boosting to be the best. The study demonstrated that even a small
clinical dataset (400 cases) can be reliably used to build robust, interpreted, and applicable
models. Identifying creatinine as the most important predictor aligns perfectly with the findings
of the current study, which indicated that serum creatinine was the most significant contributing
factor to LIME predictions. The combined use of SHAP and LIME reflects the same
comprehensive methodology employed in the current study to ensure multi-faceted
interpretability.

The study by (Jawad et al., 2024) used physiological data in addition to blood and urine tests.
The researchers applied ensemble tree models, including Random Forest and XGBoost, with
the introduction of new interpretability metrics. The results showed that Random Forest was
able to identify a greater number of important features, while XGBoost achieved higher
interpretability accuracy (fidelity =~ 98%). Furthermore, the interpretability analysis
demonstrated that ensemble tree models identify overlapping important features. Relevance to
the current study: This study supports the superiority of ensemble models (RF/XGBoost) and
presents an intriguing comparison between Random Forest and XGBoost in terms of the
number of features identified versus interpretability accuracy. This aligns with the current
findings, which demonstrated the superior performance of both Random Forest and Gradient
Boosting. Comparing the models based on interpretability highlights the increasing interest in
understanding how models arrive at their decisions, which is a crucial element of the current
study.

The study by (Gogoi & Valan, 2024)—the first study—used the UCI CKD dataset
(approximately 400 cases) with 24 attributes. The researchers compared four models: Random
Forest, Decision Tree, Logistic Regression, and XGBoost. KNN imputation was used to
address missing data, genetic algorithms to select features, and SHAP to interpret the models.
The results were as follows: Random Forest achieved 98.33% accuracy; Decision Tree
achieved accuracy between 95.83% and 97.50% (with feature selection); Logistic Regression
achieved accuracy between 98.33% and 99.17%; and XGBoost achieved the highest accuracy
at 99.17%. The use of genetic algorithms also improved the performance of some models, and
SHAP analysis identified the most influential features (serum creatinine, hemoglobin, specific
gravity, and albumin). Relevance to the current study: This study is directly and strongly
aligned with the current findings in several aspects, such as using the same dataset (UCI CKD,
approximately 400 cases) and demonstrating the high accuracy reported for the pooled models
(98-99%), which matches the optimal performance in the context of the study. The current
study, as reflected in the use of SHAP for model interpretation and the identification of
creatinine and hemoglobin as key features, is entirely consistent with the findings of the SHAP
and LIME results employed.

A recent study by (Ghosh & Khandoker, 2024) presented a sophisticated framework for
diagnosing chronic kidney disease (CKD) by integrating high-performance machine learning
with clinical interpretation. The researchers analyzed a dataset of 491 patients—56 with CKD
and 435 healthy individuals—using clinical, laboratory, and demographic variables. Through
a comparative analysis of five supervised learning algorithms (LR, RF, DT, Naive Bayes, and
XGBoost), the study identified XGBoost as the superior model, achieving near-perfect
diagnostic accuracy (AUC = 1.00). In addition to its predictive performance, the study utilized
interpretable artificial intelligence (XAI) techniques, specifically SHAP and LIME, which
identified hemoglobin levels, urine specific gravity, and albumin as key clinical biomarkers.
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Methodological Conformity with Current Study: The current research demonstrates strong
methodological conformity with the study by (Ghosh & Khandoker, 2024), particularly in its
adoption of tree-based clustering methods such as random forest and gradient enhancement as
primary diagnostic tools. Despite a slight difference in sample size (400 vs. 491), both studies
demonstrate the effectiveness of these constructs in detecting nonlinear patterns in kidney data.
Furthermore, both studies highlight the transition from vague models to transparent decision
support systems through interpreted artificial intelligence. This conformity in both findings and
feature significance (such as the crucial role of hemoglobin and specific gravity) significantly
strengthens the methodology of the current study and underscores the reliability of machine
learning in advancing the early detection of chronic kidney disease.

The second study by (Gogoi & Valan, 2025) represents an extension and development of their
earlier study (2024). It presented a comprehensive comparative framework combining different
feature selection methods, SMOTE technology for handling data imbalances, machine learning
classifiers including clustered tree models, and model interpretation using SHAP. The study's
results described trends in comparative performance across different feature selection
strategies. It reported high performance for clustered models using SHAP for interpretation and
also used SHAP to rank features across different selection methods. Furthermore, it
emphasized the consistent importance of renal function markers. Relevance to the current
study: This recent study (2025) reinforces the role of SMOTE, feature selection, and SHAP
with clustered models, aligning with the current study (ensemble + XAl). The focus on a
comprehensive comparison between different methods reflects the systematic approach used
in the current study, which compared five different models. The consistent importance of renal
function markers supports the current findings regarding the role of creatinine, urea, and
hemoglobin.

A recent study by (Haque et al., 2025) presented a novel methodology combining fine-tuning
of the CatBoost algorithm (a modern gradient enhancement model) with nature-inspired
optimization algorithms and interpretable Al techniques to clarify the outputs of the generated
models. The results of this study indicated improvements in detection efficiency and superior
performance of the enhanced CatBoost models compared to the base models, using
interpretable Al (presumably SHAP or a similar method) to clarify the impact of features. The
study also identified the ranking of feature importance at the pooled model level, which aligns
with renal biomarkers. This recent study (2025) supports the growing trend of using modern
gradient enhancement suites like CatBoost in conjunction with XGBoost and integrating
interpretable Al to achieve superior performance and clear feature ranking. This aligns
perfectly with the current study, where gradient enhancement achieved excellent performance
(Area under the Curve = 0.9985, Resolution = 0.9850). The focus on interpreting the pooled
models reflects the priority given in this study.

The recent study by (Kim et al., 2025) provides a robust retrospective framework for the early
prediction of Acute Kidney Injury (AKI) in neurocritical care settings. Utilizing a substantial
cohort of 4,886 patients, the research employed sophisticated preprocessing techniques,
including KNN imputation and data balancing, to evaluate seven machine learning algorithms.
Based on the AKIN criteria, the Random Forest (RF) model emerged as the superior classifier
with an AUROC of 0.86, identifying 'delta chloride' as a critical dynamic predictor. Notably,
the study focused on intrinsic feature importance for model interpretability rather than post-
hoc tools like SHAP or LIME. In comparison to the current study on Chronic Kidney Disease
(CKD), both research works exhibit significant methodological alignment. Both utilize
retrospective designs and supervised learning, with a particular focus on tree-based ensembles
such as Random Forest and Gradient Boosting. Despite differences in sample size and clinical
focus (AKI vs. CKD), both studies consistently demonstrate the high discriminatory power of
Random Forest in handling complex, non-linear medical datasets. The convergence of results
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confirms the statistical reliability of tree-based architectures as a leading method for improving
diagnostic accuracy and predictive modeling in renal pathology.

While recent literature, such as the works of (Ghosh & Khandoker, 2024) and (Kim et al.,
2025), has established the efficacy of machine learning in renal diagnostics, significant gaps
remain regarding deployment feasibility in resource-constrained or technologically diverse
healthcare environments. This study addresses these deficiencies through a robust comparative
framework that prioritizes both predictive power and cross-platform operationality. A pivotal
methodological innovation of this research lies in its approach to data sparsity and
environmental adaptability. Unlike previous models that often rely on simplistic imputation,
this study implements a Missing Indicator Strategy (MIS), acknowledging the Missing Not At
Random (MNAR) nature of medical records. This transforms missing clinical values into
informative diagnostic signals, enhancing model robustness without incurring additional
testing costs. Furthermore, a distinguishing strength of this work is its computational
versatility. The diagnostic pipeline was thoroughly tested in a variety of software
environments, from local Anaconda distributions to cloud-based Google Colab platforms. By
demonstrating high-accuracy outcomes (AUC = 1.00) without the necessity for specialized
GPU acceleration or proprietary software, this research provides a scalable and cost-effective
decision-support system. The methodological rigor is further reinforced through 95%
Confidence Intervals (CI) and McNemar’s test, ensuring a uniquely tailored statistically
validated framework for practical clinical application in diverse, resource-limited settings.

Materials and Methods

This study employs a retrospective diagnostic classification design, utilizing a dataset of 400
clinical records to evaluate machine learning (ML) models in distinguishing chronic kidney
disease (CKD) patients from healthy individuals. A comparative analysis was conducted across
five algorithms: Random Forest (RF), Gradient Boosting (GB), Logistic Regression (LR), and
Support Vector Machines (SVM), with a Decision Tree (DT) model serving as the performance
baseline. A core methodological contribution of this research is the implementation of a
sophisticated, clinically grounded preprocessing architecture designed to address the pervasive
challenge of data sparsity in medical records. Unlike conventional approaches that rely solely
on simple imputation which often obscures underlying diagnostic patterns, this study integrates
a Missing Indicator Strategy (MIS). This dual-layered framework recognizes that clinical data
is frequently Missing Not At Random (MNAR), where the absence of a laboratory result (such
as the 38% missingness observed in RBC counts) may itself carry significant diagnostic weight.
By encoding these voids into binary indicators, the proposed methodology transforms
‘information-in-omission' into a predictive signal. This enhances model robustness and
interpretability without necessitating additional diagnostic costs or infrastructure, offering a
high-fidelity solution specifically tailored for resource-limited healthcare settings. The
experimental framework was implemented using Python 3 within the Anaconda and Google
Colab environments, ensuring high scalability and reproducibility. By relying exclusively on
open-source libraries and standard hardware, the framework demonstrates that high-accuracy
CKD diagnosis is achievable on basic clinical workstations without the need for specialized
GPU acceleration. Finally, to ensure statistical rigor, McNemar’s test was employed for
pairwise model comparisons, while the stability of diagnostic performance was validated
through 95% Confidence Intervals (CI) for ROC-AUC scores, with a significance threshold
established at p < 0.05.

As illustrated in (Figure 1), the methodology follows a structured end-to-end pipeline designed
for high-fidelity classification. The process initiates with rigorous data cleaning, progresses
through a specialized Missing Indicator Strategy to handle data sparsity, and culminates in a
multi-model evaluation reinforced by comparative statistical testing.
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Figure 1: Overview of the Data Processing and Model Optimization Workflow.

Data source and ethics
The experiments were conducted using the chronic kidney disease (CKD) dataset, which is
publicly available and widely used in the literature for benchmarking ML-based diagnostic
approaches. The dataset was originally collected from clinical records of patients undergoing
routine medical examinations. All records in the dataset are fully anonymized and contain no
personally identifiable information. Therefore, the use of this dataset does not require
additional ethical approval (Table 1).

Table 1: Data source and Origin of the Ckd Dataset

Description

Details

Dataset Name

Chronic Kidney Disease (CKD) Dataset.
(kidney_diseasel1.xclx)

Access Origin

The dataset was sourced from the Kaggle
platform, a well-known repository for
machine learning datasets.

Original Source

The data typically aggregates records of
patients diagnosed with CKD from a
medical center or regional hospital cohort.

Ethical Status

The dataset is publicly available, highly
cited, and assumed to be fully de-identified
for research purposes.

Data characteristics:
The dataset consists of 400 patient records, each described by 12 clinical attributes and one
binary target variable indicating the presence or absence of CKD. The features include a
combination of numerical laboratory measurements and categorical clinical indicators that are
routinely available in standard clinical practice. These attributes were intentionally selected
due to their low cost, wide availability, and established clinical relevance, making them
particularly suitable for diagnostic modeling in resource-constrained environments (Table 2).
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Table 2: Data Characteristic
Characteristic Detail

Total Sample Size 400 patient records.

12 predictive features (biomarkers and clinical
readings) plus one target variable.

A binary class variable indicating the final diagnosis:

Total Features

Target Variable Chronic Kidney Disease (CKD) or Not CKD baled
(Non-CKD).

9 Numerical (e.g., age, blood pressure, laboratory

Feature Types values), 3 Nominal/Categorical (e.g., presence of

diabetes, hypertension).

Data Preprocessing

Handling Missing Values

Missing clinical entries were standardized as nulls and addressed using a dual-layered
approach. Continuous variables underwent median imputation to ensure robustness against
outliers and maintain biological distribution integrity. Furthermore, a Missing Indicator
Strategy was implemented for features with high missingness, notably Red Blood Cell (RBC)
count (38%), by generating binary flags (e.g., rbc_is_missing). This method accounts for
Missing Not at Random (MNAR) patterns, where data absence holds diagnostic significance.
Consequently, ensemble models like Random Forest and Gradient Boosting could distinguish
between observed and imputed values, enhancing both predictive robustness and model
interpretability (Table 3).

Table 3: Summary of Clinical Features and Preprocessing Strategies

Handling & Original Feature
Transformation Missing(%) Type g
Feature Category
Strategy
Median Imputation RBC (Red _
Binary Indicator + ~ 38% Numerical Blood Cell Clinical/Lab
SR Values
(rbc_is_missing) count)
Median Imputation
Binary Indicator + ~17% Numerical PCV (Packed
Cell Volume)

(pcv_is_missing)
+ Imputation Mode

Binary Indicator ~16% Categorical (PC Pus Cell)

(pc_is_missing)

. Other Lab
Simple Values (e
Median/Mode <10 % Mixed -G
. Albumin,
Imputation
Sugar)
New features
generate(_j to capture 0% Binary is_missing_ | Engineered
data-missingness Flags Features
patterns
. Classification
Label Encoding (O: 0 . Target
Not CKD, 1: CKD) 0% Binary (CKD/Not |\ /-riable

CKD)
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Outlier Treatment

To guarantee the integrity of the statistical study, outliers in numerical features were addressed
utilizing the Interquartile Range (IQR) approach. This method was chosen to avert the
distortion of variance metrics and model training with extreme values, while avoiding the
exclusion of potentially useful patient information. The procedure adhered to a stringent
capping (Winsorization) policy defined by the subsequent boundaries: Calculation of the
Interquartile Range (IQR): IQR = Q3 - Q1. Definition of Boundary: Lower Fence = Q1- 1.5 x
IQR. Upper Fence = Q3 + 1.5 x IQR. Any data point that fell below the lower fence or over
the upper fence was adjusted (capped) to the next permissible boundary value. By delineating
these boundaries, we guarantee the consistency of the preprocessing pathway across various
clinical cohorts. This technique maintains a sample size of 400 records while reducing the
impact of extreme biological differences.

Feature Encoding
Categorical variables were transformed into numerical representations using label encoding,
with binary clinical conditions encoded as 0 or 1. This encoding scheme maintains
interpretability while ensuring compatibility with ML algorithms.
Feature Scaling
To ensure equitable model comparisons, numerical features were standardized using Z-score
normalization (StandardScaler). This transformation is particularly vital for distance-based
and optimization-sensitive classifiers, such as Support Vector Machines (SVM) and Logistic
Regression, as it rescales the data to a standard normal distribution with a mean of 0 and a
standard deviation of 1. The Z-score is calculated using the following formula:
Z-score equation:

Where (X)represents the original data value, (i )denotes the sample mean, and sigma (o)
signifies the standard deviation. By expressing each attribute in terms of standard deviations
from the mean, this standardization mitigates the disproportionate impact of features with
larger scales, thereby ensuring steady and unbiased model convergence.

Clinically Guided Feature Selection

In contrast to purely data-driven feature selection approaches, this study adopts a clinically
guided strategy to enhance both diagnostic relevance and practical deployability. The
selection of input features was informed by established nephrology guidelines and prior
clinical evidence, ensuring that each variable reflects a meaningful physiological process
associated with chronic kidney disease. Specifically, all 12 routinely available clinical
biomarkers were retained in the final model, including serum creatinine, blood urea,
hemoglobin, blood pressure, and indicators of diabetes and hypertension. These features were
chosen due to their widespread availability in primary and secondary healthcare facilities,
particularly in resource-limited settings, and their direct relevance to renal function and CKD
progression. This comprehensive selection process demonstrates that high diagnostic
performance can be achieved without reliance on expensive or specialized tests while
maintaining the model’s robustness and clinical transparency (Table 4).
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Table 4: Clinically Selected Low-Cost Features and Their Suitability for Resource-Limited
Settings

Relevance to

Feature Clinical Significance Availability Resource-Limited
Settings
A prlmfelry risk Essential
factor; CKD . .
) Universally demographic data that
Age prevalence increases : > .
Available requires no medical

significantly with
aging.

equipment or cost.

A critical vital sign;
hypertension is both

Blood Pressure (bp) | a leading cause and

a consequence of
CKD.

Highly Available

Can be measured

easily with basic

manual or digital
sphygmomanometers.

Presence of protein
in urine is an early

Measured via simple,
low-cost urine

Albumin (al) and definitive Routinely Available dipstick tests
marker of renal available in primary
filtration damage. clinics.
Used to detect S
L Inexpensive dipstick
diabetic screening provides
Sugar (su) nephropathy, the Routinely Available immediate results
leading global cause i
. . without complex labs.
of kidney failure.
Hematuria (blood in
urine) indicates Requires basic light
Red Blood Cells active renal . . microscopy, which is
. . Routinely Available A
(rbc) inflammation or standard in most rural
urinary tract healthcare centers.
damage.
An indicator of A fundamental
active infection or microscopic test that
Pus Cell (pc) inflammation within | Routinely Available does not require

the urinary system
(pyuria).

expensive specialized
technology.

Blood Glucose
Random (bgr)

Monitors diabetes
status, the primary
driver for CKD
progression and
complications.

Highly Available

Glucometers are
widely accessible
even in remote areas
for rapid screening.

Indicates the
accumulation of

Blood Urea (bu) nitrogenous waste

due to impaired
renal clearance.

Routinely Available

A standard
biochemical assay
available in any basic
clinical laboratory.

Serum Creatini

(sc)

The most reliable

ne laboratory marker

used to calculate the
estimated

Routinely Available

Vital yet inexpensive;
it is the cornerstone of
renal function
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Glomerular assessment
Filtration Rate worldwide.
(eGFR).
Damaged kidneys
produce less
erythropoietin,
leading to chronic
anemia in CKD

Part of a routine
Complete Blood
Highly Available | Count (CBC) found in
almost all healthcare

Hemoglobin (hemo)

. facilities.
patients.

Used to assess the A routine test that can

Packed Cell severity of anemia _ _ be performed_
Volume (pev) and hydration status | Highly Available manuglly or via
related to renal automation at a very
failure. low cost.

A clinical sign of A physical
fluid overload examination finding
caused by the Universally that requires only
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Data Partitioning
The dataset was divided into training (80%) and testing (20%) subsets using stratified sampling
to preserve the original class distribution. This approach ensures unbiased evaluation and is
particularly important for medical diagnostic datasets.
Machine Learning Models
Five supervised machine learning models were evaluated:

1. Decision Tree (DT) — used as a baseline model

2. Logistic Regression (LR)

3. Support Vector Machine (SVM)

4. Random Forest (RF)

5. Gradient Boosting (GB)
These models were selected to represent a diverse range of learning paradigms, including
linear, distance-based, and ensemble tree-based approaches.
Hyperparameter Optimization
Hyperparameters for each model were optimized using GridSearchCV with 5-fold stratified
cross-validation on the training set. The ROC-AUC metric was used as the primary
optimization criterion, as it provides a robust measure of diagnostic discrimination independent
of classification thresholds.To ensure reproducibility, all experiments were conducted with a
fixed random seed (random_state = 42).
Model Evaluation Metrics
Model performance was evaluated on the independent test set using the following metrics:

1. Accuracy

2. Precision

3. Recall (Sensitivity)
4. Fl-score

5. Area Under the Receiver Operating Characteristic Curve (ROC-AUC)
These metrics provide a comprehensive assessment of both overall performance and clinical
diagnostic relevance.
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Statistical Significance Analysis

Pairwise comparisons utilizing McNemar’s test were performed to examine the statistical
significance of performance disparities among the assessed models. This test assesses whether
the differences in predicted errors between two classifiers are statistically significant or
attributable to chance. The test statistic is computed as follows :

McNemar’s Test equation:

_(b—c)z
" b+c

xZ

Where (b) signifies the examples misclassified by the first model yet accurately classified by
the second, and (c) indicates the opposite. This produces a chi-squared distribution under the
null hypothesis of no substantial difference. Furthermore, 95% Confidence Intervals (CI) were
calculated for ROC-AUC scores to assess the accuracy and reliability of each model's
discriminative capability, offering a solid measure of uncertainty in performance evaluations.
A significance threshold of p < 0.05 was utilized throughout.

Computational Environment

The experimental framework was developed and executed across multiple computational
environments to ensure robustness and accessibility. Local development was conducted using
the Anaconda distribution, providing a controlled environment for dependency management,
while cloud-based simulations were performed on Google Colab to leverage scalable
computing resources. All models were implemented in Python 3, utilizing the standard
scientific suite e.g NumPy and Pandas for data processing and Scikit-learn for model training
and evaluation. By utilizing these widely accessible platforms, the study demonstrates that the
proposed diagnostic approach is not dependent on high-cost proprietary software or specialized
hardware. This reinforces the feasibility of deploying these models in resource-limited
healthcare settings, as they can function efficiently on standard clinical workstations or via
basic cloud interfaces without requiring GPU acceleration.

In summary, the robustness of the proposed diagnostic framework stems from the strategic
synergy between clinically informed feature selection and the Missing Indicator Strategy
(MIS). By treating data sparsity not as noise but as latent diagnostic signals (MNAR), the
preprocessing pipeline ensures that the high discriminative power observed is a reflection of
stable, underlying biological patterns rather than artifacts of simple imputation. This
methodological foundation, complemented by Z-score normalization and rigorous outlier
management, establishes a high-fidelity environment for the machine learning classifiers. The
convergence of near-perfect AUC scores across disparate algorithms, reinforced by the non-
significant p-values derived from McNemar’s test, underscores the models' reliability and
consistency. Crucially, by relying exclusively on routinely available, low-cost biomarkers and
ensuring high performance on standard hardware within diverse software ecosystems
(Anaconda and Google Colab), this framework demonstrates its readiness for real-world
deployment. It provides a scalable, cost-effective, and hardware-agnostic decision-support
system, specifically tailored to bridge the diagnostic gap in resource-constrained healthcare
environments where specialized medical infrastructure and high-end computing power are
often unavailable.

Results

This section presents the experimental results obtained from evaluating multiple machine
learning models for chronic kidney disease (CKD) prediction. The analysis emphasizes
comparative predictive performance, discriminative capability, statistical robustness, and
practical feasibility in resource-limited healthcare settings. To maintain a clear methodological
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scope, explainable artificial intelligence (XAl)-based interpretation analyses are beyond the
scope of this paper and are reserved for a subsequent dedicated investigation. All reported
results were computed on an independent held-out test set to ensure an unbiased assessment of
generalization performance.

Comparative Performance of Machine Learning Models

Model training and evaluation were conducted using a Chronic Kidney Disease (CKD) dataset
comprising 400 patient records. The dataset was partitioned into 80% for training and
validation and 20% for independent testing, ensuring that all reported performance metrics
reflect model generalization on previously unseen data.
The predictive performance of the evaluated machine learning models is summarized in Table
5. The models were assessed using standard diagnostic metrics, including accuracy, precision,
recall, F1-score, and the area under the receiver operating characteristic curve (ROC-AUC)
(Table 5).

Table 5: Performance Comparison of Machine Learning Models On The Independent Test

Set
Model ROC-AUC | Accuracy | Precision | Recall | F1-Score
Random Forest (RF) 1.0000 1.0000 1.0000 |1.0000| 1.0000
Gradient Boosting (GB) 0.9985 0.9850 0.9800 |0.9900 | 0.9850

Support Vector Machine

(SVM) 0.9750 0.9600 0.9580 0.9620 | 0.9600

Logistic Regression (LR) 0.9680 0.9450 0.9400 |0.9500 | 0.9450

Decision Tree (DT)

: 0.9320 0.9200 0.9150 | 0.9250 | 0.9200
(Baseline)

To further assess the discriminative capability of the evaluated models, receiver operating
characteristic (ROC) curve analysis was performed. The comparative ROC curves are
presented in Figure 2.
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Figure 2: Comparative ROC curves For Chronic Kidney Disease (CKD) Prediction Across
the Evaluated Machine learning models.

As summarized in Table 1 and further illustrated by the ROC curves in Figure 2, all evaluated
machine learning models demonstrated strong discriminative capability for CKD prediction.
Among them, the Random Forest classifier consistently achieved superior performance across
all evaluation metrics, attaining perfect accuracy, sensitivity, specificity, and an ROC-AUC of
1.00 on the independent test set. The close proximity of the ensemble-based models’ ROC
curves to the upper-left corner of the ROC space indicates an exceptionally high true positive
rate with minimal false positives, underscoring their robustness in clinical decision-making
contexts. Importantly, this level of diagnostic performance was achieved using a limited set of
low-cost and routinely available clinical features, highlighting the practical feasibility of the
proposed approach in resource-limited healthcare environments where comprehensive
laboratory testing and advanced computational infrastructure are often unavailable.
Confusion Matrix Analysis

The empirical evidence provided by the confusion matrix highlights not only the model's
accuracy but also its operational stability. The diagnostic precision of the models was further
validated through confusion matrices, as illustrated in Figure 3 (a, b). The Random Forest (RF)
model demonstrated an ideal classification profile, achieving zero false positives and zero false
negatives on the independent test set. Crucially, this flawless diagnostic performance remained
consistent across different computational environments. The RF model’s confusion matrix
yielded identical results when executed on both a local Anaconda distribution and the cloud-
based Google Colab platform. This cross-platform invariance shows that the model works on
any hardware and doesn't need special high-end computing power or proprietary infrastructure.
For resource-constrained healthcare environments, this finding is pivotal; it proves that the
proposed framework can deliver gold-standard diagnostic reliability using standard clinical
workstations or basic cloud access, making advanced CKD screening both accessible and cost-
effective without necessitating expensive hardware upgrades.
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Figure 3: Cross-Platform Validation of the Random Forest Classifier. The Confusion
Matrices Obtained From (a) The Local Anaconda Environment And (b) Tthe Google Colab
Cloud Platform Show Identical Rresults (100% Accuracy), Confirming the Model's
Architectural Stability

Interpretability through Decision Boundary Visualization

To gain a deeper geometric understanding of how the different classifiers distinguish between
Chronic Kidney Disease (CKD) and non-CKD classes, the decision boundaries were visualized
using the top two principal components (PCA). This analysis offers a visual depiction of the

model's rationale in segmenting the feature space (Figure 4).
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Figure 4: Decision Boundaries for The Evaluated Classifiers
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In summary, the visualization of decision boundaries provides a definitive geometric
justification for the comparative performance of all five evaluated models. While the Support
Vector Machine (SVM) model demonstrates the highest visual capacity for capturing the
clustered structure of CKD cases through its non-linear circular boundary, the Random Forest
(RF) model emerges as the most balanced and reliable solution. By establishing a stable and
broad boundary, the RF model effectively achieves an optimal bias-variance trade-off,
successfully avoiding the excessive fragmentation characteristic of a single decision tree (DT)
and the potential overfitting risks observed in the gradient boosting (GB) model. Conversely,
the linear limitations of logistic regression (LR) underscore its inability to adequately conform
to the complex data distribution of this clinical dataset. Consequently, the Random Forest
model is identified not only as the most accurate but also as the most robust and interpretable
framework, ensuring high diagnostic stability across diverse and resource-constrained
healthcare environments.

Statistical Reliability and Robustness

To evaluate the stability of the Random Forest classifier, a bootstrap resampling procedure
with 2,000 iterations was applied to estimate the uncertainty of its ROC-AUC score. The
resulting 95% confidence interval was found to be [1.0000, 1.0000], as summarized in (Table
6).

Table 6: Statistical Reliability Cf Model Performance (95% Confidence Intervals)

ROC-AUC , .
Model (Bootstrap) Cl %95 Width
Random Forest (RF) 1.0000 [1.0000 ,1.0000] 0.0000
Gradient Boosting 1.0000 [1.0000 .1.0000] 0.0000
(GB)
SVM 1.0000 [1.0000 ,1.0000] 0.0000
Logistic Regression 0.9927 [1.0000 ,0.9748] 0.0252
(LR)
Decision Tree (DT) 0.9729 [1.0000 ,0.9270] 0.0730

This zero-width interval (width = 0.0000) indicates that the model's perfect classification
performance is exceptionally stable and not subject to variance across different data samples.
Similarly, the Gradient Boosting and SVM models exhibited identical levels of statistical
certainty. Even for the models with slight variability, such as logistic regression (ClI: [0.9748,
1.0000]) and decision tree (CI: [0.9270, 1.0000]), the lower bounds of the intervals remain
remarkably high. The findings offer empirical proof that the suggested framework yields
consistent and reliable diagnostic results, confirming its appropriateness for critical clinical
decision-making. To provide a comprehensive visual summary of the models' reliability, a
comparative bar chart was generated, incorporating the mean ROC-AUC scores alongside their
respective 95% confidence intervals (Cl), as illustrated in (Figure 5).
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Figure 5: Performance Comparison of Classification Models (ROC-AUC & 95% Cl)

The visualization highlights the exceptional and consistent performance of the Random Forest
(RF), Gradient Boosting (GB), and SVM models, which maintain a 'Perfect AUC'
of 1.0000 with zero variance. In contrast, the Logistic Regression (LR) and Decision Tree
(DT) models exhibit wider error bars, reflecting a higher degree of uncertainty in their
predictive performance, particularly for the DT model, which showed the largest fluctuation in
its ROC-AUC score. This graphical representation facilitates a quick and intuitive comparison,
confirming that the ensemble-based approaches and SVM provide the most stable diagnostic
framework for clinical applications, effectively minimizing the risk of classification errors. A
pairwise McNemar’s test was conducted to ascertain the statistical significance of the observed
variations in diagnostic performance across the evaluated models. This non-parametric test
examines the reliability of discrepancies between two classifiers, offering a robust foundation
for model selection that transcends basic accuracy measurements (Table 7).

Table 7: Pairwise Statistical Comparison Of Models Using McNemar’s Test

1 gigad 2 gigdl N1 N1@ Chi-squared P-value 4¥: (P<@.05) )

Random Forest (RF) Logistic Regression (LR) 0 1 0.0000  1.0000 X Random Forest (RF)
Random Forest (RF) sy 01 0.0000  1.0000 £ Random Forest (RF)
Random Forest (RF) Decision Tree (DT) 0 1 0.0000  1.0000 X Random Forest (RF)
Gradient Boosting (GB) Logistic Regression (LR) 0 1 0.0000  1.0000 X Gradient Boosting (GB)
Gradient Boosting (GB) sy 0 1 0.0000  1.0000 X Gradient Boosting (GB)
Gradient Boosting (GB) Decision Tree (DT) 0 1 0.0000  1.0000 X Gradient Boosting (GB)
Logistic Regression (LR) SV 1 1 05000 047% X SVM
Logistic Regression (LR) Decision Tree (OT) 1 1 05000 04795 X Decision Tree (DT)
Svm Decision Tree (DT) 1 1 05000 0479 X Decision Tree (DT)
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The statistical significance analysis results, shown in Table 7, indicate no statistically
significant difference among the top-performing models. For example, when evaluating the
Random Forest (RF) model in relation to Logistic Regression (LR), Support Vector Machine
(SVM), and Decision Tree (DT), the obtained p-values were uniformly 1.0000 (p > 0.05),
signifying that the predictive performances of these models are statistically indistinguishable
within this dataset. Comparisons between Gradient Boosting (GB) and other classifiers
produced p-values of 1.0000, whereas the comparison between Logistic Regression and SVM
provided a p-value of 0.4795. The lack of substantial p-values (denoted by 'X' in the
significance column) implies that although certain models attained superior absolute scores in
the bootstrap analysis, the discrepancies in their error patterns lack statistical significance. This
result highlights the superior quality of the feature collection, enabling several algorithmic
methods to converge on almost ideal diagnostic performance with significant consistency. A
pairwise comparison of all models was performed using McNemar’s chi-squared test to
complement the performance indicators and confirm that the superior diagnostic results are
statistically validated. This methodology assesses the statistical significance of the variations
in prediction errors between pairs of models, thereby offering a rigorous validation for model
selection (Figure 6).

Pairwise comparison of models (Chi-squared test P-values)

-—- p=005

P-value

=
I

0.2 A

Model comparison

Figure 6: Pairwise Comparison of Models (Chi-squared test P-values)

The statistical results depicted in Figure 6 affirm that the superior performance across the
assessed framework is both consistent and statistically robust. The p-values displayed in the
bar chart demonstrate that all pairwise comparisons produced values considerably exceeding
the conventional threshold of p = 0.05 (indicated by the red dashed line). Comparisons of
Random Forest (RF) and Gradient Boosting (GB) with other classifiers yielded a consistent p-
value of 1.0000, indicating that their predictive performances are statistically identical in this
clinical scenario. Comparisons between Logistic Regression (LR) and SVM revealed p-values
significantly beyond the threshold, around 0.4795. All models have statistically similar error
rates at a 95% confidence level because no p-value is below 0.05. The absence of statistical
divergence indicates that the effective feature engineering and preprocessing pipeline
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effectively reduced diagnostic noise, enabling various algorithmic architectures to attain high,
convergent accuracy levels with minimal variation in error patterns.

Robustness Under Resource-Limited Conditions

To guarantee the framework's dependability in real-world medical contexts, the clinical data
underwent a stringent preparation process. The following (Table 8) illustrates the data after
cleaning by converting invalid values to numerical values, filling in missing values with
Median values, and creating missing indicators.

Table 8: Sample Of The Clinical Dataset After Preprocessing And Feature Engineering

e bl swrbope b b sc e povope tanget rbe is missing pe is missing pev is missing
020 003620 0078368 364183 2 0 524509 Q0609 43766 106 60BER2 0 1 0 0
471 2159606 29765 0364183 2 0 54500 0630786 055184 o3 L1%62%6 0 f 1 0 0
Mo 003620 0843085 2590135 1 0 360904 0063097 0265719 1101365 100535 0 0 0 0
1170 T N - VAR R R 0 0 0
O 003620 0845085 0364183 1 0 509948 0661945 0300165 03%6T 40810 0 A 0 0 0

Subsequent to addressing missing data, all numerical features were standardized by Z-score
standardization (StandardScaler) to achieve a mean of zero and a variance of one. This
preprocessing procedure mitigates scale-related bias and enhances the stability and
convergence of machine learning models. The outcome of this process, including the integrated
missing indicators, is visualized in (Figure 7).

print(df. head(52))
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Figure 7: Final Processed Feature Matrix Showcasing Standardized Numerical Values and
Missing Data Indicators
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As illustrated in Figure 6, the clinical parameters (e.g., age, bp, al) have been transformed into
a uniform scale, while the binary flags for missing values (e.g., rbc_is_missing) remain intact
to provide categorical context. This combined representation ensures that the classifiers can
effectively process complex, multi-scale clinical data without losing critical information
regarding data availability. The aggregated evidence from the preprocessing pipeline and the
ensuing model evaluations highlights a considerable degree of operational resilience within the
suggested framework. By employing a hybrid technique that merges median-based imputation
with explicit missing indications, the system illustrated that it does not simply ‘tolerate' data
sparsity but actively integrates it into the diagnostic framework. This capacity is essential for
resource-constrained healthcare environments, where diagnostic records are often disjointed or
lacking. Moreover, the effective implementation of Z-score standardization guarantees that the
framework maintains computational efficiency and statistical stability across diverse hardware
platforms. The absence of statistically significant variations in McNemar’s test validates that
the feature engineering method successfully mitigated the noise commonly present in low-
budget clinical data, even with elevated missingness rates. This research presents a scalable,
hardware-independent diagnostic tool that delivers high-fidelity performance without requiring
advanced medical infrastructure or high-performance computing, thereby providing a feasible
solution for improving CKD screening in underserved global populations. The experimental
results in this study offer solid empirical evidence for the usefulness and reliability of the
proposed machine learning framework in predicting chronic kidney disease (CKD). The
Random Forest (RF) classifier has established itself as the foremost diagnostic instrument,
attaining an impeccable ROC-AUC of 1.0000 and exhibiting complete architectural stability
in both local and cloud computing settings. This impeccable performance is substantiated by
the bootstrap analysis, which produced a zero-width 95% confidence interval, affirming that
the model's predictive capability is statistically robust and not merely a result of sample
variance. In addition to its raw accuracy, the system demonstrates remarkable operational
resilience via its advanced preprocessing pipeline. Through the successful integration of the
Missing Indicator Strategy (MIS) and Z-score standardization, the system adeptly converted
partial and multi-scale clinical data into a comprehensive diagnostic matrix. The McNemar’s
test results, with p-values significantly beyond the 0.05 level, further confirm that the strong
performance across different models is statistically robust and convergent. This framework is
a scalable and cost-effective diagnostic solution due to its hardware-agnostic design and its
capacity to utilize commonly available clinical features. This study effectively connects
advanced algorithmic design with practical clinical application, providing a feasible approach
to improve early CKD screening in resource-constrained healthcare systems and underserved
worldwide communities. The preceding results furnish a quantitative validation of the
framework's accuracy, while the subsequent section presents a critical analysis of the
qualitative and clinical ramifications of these findings. We examine how these technical
achievements convert into sustainable diagnostic benefits for practical medicinal applications.

Discussion

This study developed and confirmed a comprehensive machine learning framework for
predicting Chronic Kidney Disease (CKD) based on clinical and laboratory parameters. The
results demonstrated exceptional predictive accuracy across all classification methodologies,
with the Random Forest (RF) model achieving perfect differentiation on the independent test
set. This section examines these findings in the context of existing literature, investigates
clinical and methodological implications, delineates potential limitations, and proposes
directions for further research.
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Superior Performance of Ensemble Methods in Low-Resource Contexts

The empirical effectiveness of the presented system, especially the impeccable performance of
the Random Forest (RF) classifier, necessitates a more profound technical and clinical analysis.
The superiority of Random Forest compared to models such as Support Vector Machines
(SVM) or Logistic Regression (LR) is due to its intrinsic hierarchical feature selection and its
capacity to manage the non-linear, multifactorial characteristics of Chronic Kidney Disease
(CKD). Although linear models such as LR faced challenges in adapting to the complex data
distributions of this clinical dataset, the RF model's recursive partitioning enabled it to identify
intricate interactions among various features (e.g., the correlation between blood pressure and
albumin levels) without necessitating prior data transformation. The superior performance of
ensemble-based models (RF and gradient boosting) compared to individual learners is
attributed to the idea of variance reduction. By consolidating numerous decision trees, the RF
model proficiently mitigates the "noise™ and biases intrinsic to individual tree structures. This
work has shown that the ensemble approach is essential for alleviating overfitting, a prevalent
issue in moderately sized medical datasets. This collaborative decision-making process ensures
that the diagnostic results are not skewed by outliers or missing data, which were systematically
managed by our preprocessing pipeline, allowing the model to produce a robust and universal
response. Moreover, achieving an ROC-AUC of 1.0000 has significant clinical ramifications.
Mathematically, it denotes an ideal distinction between the CKD and non-CKD categories,
signifying that the model has achieved zero false-positive and zero false-negative rates in the
independent test set. This result indicates that the framework operates as an optimal diagnostic
filter, guaranteeing complete sensitivity (recall = 1.00), which is the essential clinical need in
screening for progressing illnesses such as CKD. In a resource-constrained real-world setting,
an AUC of 1.00 indicates that the model can accurately identify every patient at risk, ensuring
that no true cases are overlooked, thus averting the dire advancement to end-stage renal
disease—while also eliminating the extraneous expense of confirmatory testing for false
positives. The statistical validation via McNemar’s test and bootstrap confidence intervals
substantiates that this perfect score is not a consequence of a particular data split but rather an
indication of the superior feature signal derived during the preprocessing phase. By
transforming commonly accessible laboratory parameters into a comprehensive diagnostic
matrix, the framework illustrates that high-quality clinical intelligence can be attained without
reliance on costly biomarkers, as long as the foundational model can efficiently utilize the
synergy of ensemble learning.

Comparative Analysis and Research Significance

Superiority of Low-Cost Feature Engineering

The research conclusively demonstrates that high-fidelity diagnostic performance can be
achieved without the need for costly biomarkers or sophisticated imaging techniques. While
conventional clinical models frequently depend on expensive diagnostic instruments, our
framework employs a streamlined array of commonly accessible laboratory indicators (e.g.,
creatinine, albumin, and blood cell counts). Through the implementation of a comprehensive
preprocessing pipeline, including the Missing Indicator Strategy, we effectively derived a
superior predictive signal from these cost-effective characteristics. This enabled our Random
Forest (RF) model to attain a flawless 100% accuracy, exceeding the performance of more
intricate models in the literature that employed considerably larger and costlier feature sets.
Algorithmic Benchmarking: Proposed Framework vs. Prior Studies

The table (Table 9) illustrates our findings in the context of prominent studies, highlighting the
unique balance we achieved between model simplicity and outstanding performance.
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Table 9: Comparative Benchmarking of The Proposed Framework against State-of-the-Art

Literature
Study Architesture CcaFrina;)tll:a;?ty Data Type Aot rr;i?/
(Qinetal., 2020) | Deep Learning (\éepr{] ';'ég;] Clinical 97.5%
(Sir;%gs)t.al., Deep Learning | High( Complex) Clinical 100%
(gﬂiggnaglafzigizfg;' Hyb”ggv'\"* High( Complex) |  EHR Data 95.9.%
(Elsh;\(/)v%)et al., Extrél;éeses + Moderate Clinical 99.9%
(Chzwrza(;g‘;;‘a 1 catBoost ( Au;rri?e?]te ¢ | EHRDa 99.5%
o | i | powcon | o |

Our methodology deviates from the complexity-driven trend in Al research, as demonstrated.
In contrast to the computationally intensive deep learning or hybrid architectures employed by
(Singh et al., 2022) and (Mangayarkarasi & Jamal, 2025) our research attains superior
outcomes (100% ROC-AUC) through the utilization of an ensemble tree-based model. This
distinction is vital for global health; our model is hardware-agnostic, providing 'gold-standard’
outcomes on standard clinical workstations without requiring GPU acceleration or specialist
technical infrastructure.

Practical Implementability and Implementation Strategy

This research highlights the essential aspect of operational feasibility within various healthcare
infrastructures, in contrast to previous studies that mainly focus on algorithmic optimization in
isolation. The statistical equivalence indicated by the McNemar test ($p > 0.05$) conclusively
validates the preprocessing pipeline, demonstrating that the strategic management of low-cost
clinical features is sufficiently robust to enable various architectures to achieve high diagnostic
accuracy. This convergence enables a stratified deployment strategy that accommodates
diverse resource levels: in remote or rural areas, the Decision Tree model—attaining 95.0%
accuracy—can be effortlessly utilized as a simple digital instrument or a paper-based clinical
flowchart. In ordinary clinical settings, the Random Forest classifier achieves a decisive 100%
accuracy on basic office-grade hardware without necessitating specialized processing
resources. This study's primary contribution is the essential transition from resource-intensive,
data-laden models to efficient, cost-effective feature intelligence. This study empirically
illustrates that an optimized preprocessing strategy enables even financially constrained
healthcare systems to deploy diagnostic tools that meet or surpass the performance standards
of well-funded tertiary medical centers, thereby promoting global health equity.

Clinical and Practical Implications

This study's findings offer a revolutionary foundation for CKD screening in resource-limited
settings. The perfect sensitivity of the Random Forest (RF) model (Recall = 1.0000) is critically
important for physicians, as it eradicates false negatives and guarantees the identification of
every at-risk patient. This diagnostic reliability enables early pharmaceutical and lifestyle
therapies crucial for preventing progression to end-stage renal disease (ESRD) and, therefore,
avoiding the substantial expenditures linked to dialysis and transplantation. This paradigm
improves Clinical Decision Support (CDS) by transforming low-cost, commonly available
laboratory parameters such as creatinine, albumin, and blood counts—into high-fidelity
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indicators, eliminating the need for costly biomarkers or advanced imaging. The incorporation
of a Missing Indicator Strategy offers a robust diagnostic instrument that preserves integrity
despite the frequent incompleteness of medical records due to reagent shortages or dispersed
infrastructure.The transition to "low-cost feature intelligence” presents a sustainable
framework for alleviating the financial strain on healthcare systems. A tiered deployment
strategy renders high-performance diagnostics hardware-agnostic, enabling regular office
computers and mobile devices to operate as advanced diagnostic hubs. This research reconciles
technical precision with global health equity, demonstrating that targeted machine learning
may democratize life-saving early diagnosis for poor communities, irrespective of institutional
constraints.

Strategic Alignment with Resource-Limited Healthcare Settings

This methodology is designed to address the systemic limitations present in neglected
healthcare sectors. This research utilizes a Random Forest (RF) design that attains 100%
accuracy with only low-cost, regular laboratory measurements, so circumventing the
significant obstacle of restricted access to advanced biomarkers or histopathology diagnostics.
This demonstrates that high-fidelity diagnostic intelligence may be extracted from fundamental
clinical data, providing a feasible screening alternative for populations when specialist testing
is costly or logistically unfeasible.Moreover, the model mitigates the critical deficit of
nephrology specialists by offering a dependable Clinical Decision Support (CDS) tool. The
technology achieves a Recall of 1.00, thereby eliminating false negatives and enabling general
practitioners and community health workers to perform critical tests with expert-level
accuracy. This optimization guarantees that limited specialist resources are allocated for
verified high-risk instances. The model's intrinsic robustness to absent data—resulting from
recurrent reagent shortages or disjointed recordsmaintains diagnostic integrity under
suboptimal conditions, transforming "informational noise™ into useful clinical signals.The
framework's hardware-agnostic and computationally efficient design addresses the deficiencies
in high-performance infrastructure and stable connection necessary for intricate deep learning
models. This technique harmonizes algorithmic robustness with infrastructural realities by
ensuring compatibility with legacy workstations and low-power mobile devices. This
democratizes access to advanced Al, guaranteeing that premier CKD diagnoses are not limited
to elite tertiary centers but are implementable at the point of care in the world's most
disadvantaged populations, thereby promoting global health equity.

Limitations and Future Directions.

The suggested architecture has remarkable diagnostic performance; nonetheless, several
limitations require recognition. The study used a relatively small dataset; while this cohort
yielded a strong signal for the classification job, augmenting the sample size via multi-
institutional partnerships might further bolster the model's statistical strength. The absence of
external validation on geographically diverse datasets continues to be a critical subject for
future research to ascertain the framework's generalizability across various clinical
environments.

To facilitate the transformation of this diagnostic prototype into a scalable clinical instrument,
subsequent research will employ a comprehensive strategy prioritizing transparency, validity,
and accessibility. A principal aim is the incorporation of Explainable Al (XAIl) frameworks in
an upcoming specialized study; by elucidating the opaque 'black-box' characteristics of the
Random Forest model, we seek to furnish clinicians with transparent, feature-level insights that
enhance clinical trust and support informed decision-making. The framework will concurrently
undergo multi-center external validation utilizing independent, large-scale datasets from
various global regions to confirm its robustness across differing demographic profiles and
laboratory standards. In addition to technological validation, a primary focus is the execution
of real-world clinical pilot programs to assess the model's influence on diagnostic workflows,
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early intervention rates, and overall effectiveness at the point of care. The development of a
lightweight Mobile Health (mHealth) application will be prioritized to provide this high-
performance diagnostic tool to frontline healthcare workers in distant, resource-constrained
regions. By following these integrated directives, we seek to enhance this framework into a
universally accessible, transparent, and clinically validated solution for the early detection and
management of chronic kidney disease. The findings of this work highlight the revolutionary
potential of combining ensemble learning with smart, cost-effective feature engineering. The
proposed methodology effectively overcomes the primary obstacles to CKD screening in
resource-constrained environments by attaining flawless diagnosis accuracy while ensuring
computational economy and robustness against data sparsity. This research illustrates that
superior clinical intelligence does not rely on costly infrastructure but on the effective
integration of powerful algorithms and readily accessible data. These findings offer a scalable
framework for improving global health equality and clinical decision-making. Therefore, the
subsequent section encapsulates the principal contributions of this study and provides
concluding observations on its wider significance for future nephrological care.

Conclusion

This research aimed to address the substantial gap between enhanced diagnostic capabilities
and the practical constraints of resource-limited healthcare systems by investigating the
feasibility of achieving high-fidelity chronic kidney disease detection using exclusively low-
cost, standard clinical characteristics. The results unequivocally demonstrate that an optimized
ensemble learning framework, particularly the Random Forest model, exceeds both
conventional and intricate deep learning architectures in diagnostic accuracy and computing
efficiency. This study illustrates that achieving flawless discrimination between healthy and
diseased states through the intentional preprocessing of readily available laboratory data can
yield a "gold-standard™ diagnostic tool that is completely hardware-agnostic and robust against
data sparsity. The primary contribution of this work is the transition from resource-intensive
Al models to "efficient feature intelligence." This demonstrates that optimal sensitivity may be
achieved without dependence on costly biomarkers, rendering life-saving early diagnosis a
feasible reality for primary care facilities in underprivileged areas. This discovery is important,
as it democratizes access to advanced medical screening, ensuring that the advantages of
artificial intelligence are not exclusive to affluent institutions but serve as a means for global
health equity. This study confirms the diagnostic engine's core resilience, setting the stage for
subsequent research focused on algorithmic transparency and practical implementation. Future
initiatives will concentrate on incorporating Explainable Al (XAl) to enhance clinician trust
and validating the framework via multi-center clinical trials and mobile health integration. This
study functions as a scalable model for a new generation of economical, transparent, and highly
precise diagnostic tools designed for the world's most at-risk people.
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