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Abstract:  

This research addresses the critical gap between advanced diagnostic technologies and the 

operational constraints of healthcare systems in resource-limited settings. Chronic Kidney 

Disease (CKD) represents a growing global health burden, yet early detection remains a 

challenge in underserved regions due to the high cost of specialized diagnostic tools. This study 

presents a comparative evaluation of five prominent machine learning algorithms—Random 

Forest, Gradient Boosting, Logistic Regression, Support Vector Machines (SVM), and 

Decision Trees—to develop a high-precision diagnostic framework. Unlike conventional 

models that rely on expensive parameters, this study prioritizes 12 low-cost, clinically relevant 

biomarkers, such as serum creatinine, albumin levels, and hemoglobin, which are routinely 

available in basic clinical laboratories. A key innovation of this research is the implementation 

of a "Missing Indicator" preprocessing strategy, which transforms incomplete clinical data into 

robust diagnostic features, ensuring the model remains functional in real-world environments 

where data gaps are common. The experimental results demonstrate that the Random Forest 

model achieved superior predictive performance, with an accuracy exceeding 99%, 

outperforming both traditional classifiers and more complex architectures in terms of 

sensitivity and computational efficiency. The study concludes that integrating machine 

learning with routine, low-cost biomarkers can significantly democratize early CKD diagnosis, 

providing a scalable and cost-effective solution for improving patient outcomes in developing 

healthcare infrastructures. This framework offers a practical pathway for implementing 

explainable AI tools that align with the economic realities of global health challenges. 
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 الملخص

تتناول هذه الدراسة الفجوة الحرجة بين تقنيات التشخيص المتقدمة والقيود التشغيلية لأنظمة الرعاية الصحية 

البيئات ذات الموارد المحدودة. يمثل مرض الكلى المزمن عبئاً صحياً عالمياً متزايداً، ومع ذلك لا يزال  في  

الاكتشاف المبكر يشكل تحدياً في المناطق المحرومة بسبب التكلفة العالية لأدوات التشخيص المتخصصة.  

الغابة العشوائية، تعزيز التدرج، —لبارزةيقدم هذا البحث تقييماً مقارناً لخمسة من خوارزميات التعلم الآلي ا

لتطوير إطار تشخيصي عالي الدقة. وعلى  —الانحدار اللوجستي، آلات المتجهات الداعمة، وأشجار القرار

لـ   الدراسة الأولوية  تعتمد على معايير مكلفة، تعطي هذه  التي  التقليدية  النماذج  حيوياً    12عكس  مؤشراً 

اً، مثل كرياتينين المصل، ومستويات الألبومين، والهيموجلوبين، وهي  منخفض التكلفة وذات صلة سريري

تنفيذ  في  البحث  لهذا  الرئيسي  الابتكار  ويتمثل  الأساسية.  السريرية  المختبرات  في  بشكل روتيني  متاحة 

غير   السريرية  البيانات  تحول  والتي  المفقودة"،  البيانات  "مؤشر  على  تعتمد  مسبقة  معالجة  استراتيجية 

ملة إلى ميزات تشخيصية قوية، مما يضمن بقاء النموذج فعالاً في بيئات العالم الحقيقي حيث تشيع  المكت

فجوات البيانات. أظهرت النتائج التجريبية أن نموذج الغابة العشوائية حقق أداءً تنبؤياً فائقاً بدقة تجاوزت 

حيث الحساسية والكفاءة الحسابية. تخلص  %، متفوقاً على المصنفات التقليدية والهياكل الأكثر تعقيداً من  99

الدراسة إلى أن دمج التعلم الآلي مع المؤشرات الحيوية الروتينية منخفضة التكلفة يمكن أن يساهم بشكل  

كبير في إتاحة التشخيص المبكر لمرض الكلى المزمن للجميع، مما يوفر حلاً قابلاً للتوسع وفعالاً من حيث 

ضى في البنى التحتية الصحية النامية. يوفر هذا الإطار مساراً عملياً لتنفيذ أدوات التكلفة لتحسين نتائج المر

 .الذكاء الاصطناعي القابلة للتفسير والتي تتماشى مع الواقع الاقتصادي لتحديات الصحة العالمية
 

المفتاحية: المحدودة  الكلمات  الموارد  ذات  الصحية  الرعاية  الآلي،  التعلم  المزمن،  الكلى  الغابة مرض   ،

 . العشوائية، المؤشرات الحيوية منخفضة التكلفة، التحليلات التنبؤية.

Introduction 

Chronic Kidney Disease (CKD) constitutes a worldwide health crisis marked by the gradual 

decline of renal function, impacting millions of people globally. Early clinical identification is 

crucial, as prompt intervention is the key determinant in preventing disease development, 

alleviating patient suffering, and enhancing long-term survival rates. Nonetheless, healthcare 

clinicians in resource-constrained areas face significant institutional barriers in obtaining 

prompt and precise diagnoses. The issues are exacerbated by a significant lack of advanced 

laboratory facilities, limited diagnostic options, and a severe shortage of nephrology doctors 

qualified to deliver specialized care. Despite the emergence of machine learning (ML) as a 

disruptive force in automated disease prediction, a notable disparity persists between 

algorithmic success and practical clinical use. Current research frequently emphasizes the 

creation of intricate predictive models that require substantial, high-quality information and 

significant computational resources to achieve optimal performance. As a result, these data-

intensive requirements make such models predominantly unsuitable in areas marked by 

fragmented data infrastructure and constrained technical resources. This study tackles these 

complex difficulties by developing a resilient machine learning architecture tailored for 

resource-limited settings. Our methodology emphasizes a concise array of cost-effective, 

widely available biomarkers with established clinical efficacy, in contrast to traditional 

methods that depend on costly or specialized diagnostic markers. This study emphasizes 

computing efficiency and a hardware-agnostic architecture to create a system that achieves 

"gold-standard" diagnostic accuracy despite limited or poor data. To understand the importance 

of this approach, it is crucial to assess how prior diagnostic procedures have sought to balance 
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complexity and accessibility. The following section provides a critical review of the existing 

literature, highlighting the technological gaps in current CKD prediction models and 

establishing the necessity for the efficient, high-performance architecture proposed in this 

study. 

 

Related work 

The results of this research indicate a notable improvement in diagnostic accuracy compared 

to the study by (Raihan et al., 2023). Although their XGBoost classifier achieved an impressive 

accuracy of 99.16%, the Random Forest model developed in this study reached flawless 

performance, with 100% accuracy and ROC-AUC. This advancement underscores a crucial 

shift in emphasis from merely enhancing algorithmic complexity to tackling the essential 

research gap related to practical clinical application and data limitations in settings with limited 

resources. The study explicitly addresses significant constraints associated with real-world 

implementation, directly confronting limitations that are frequently underrepresented in 

previous model-centric research. These constraints include the dependence on advanced 

missing-data imputation techniques, the intentional optimization of an economical biomarker 

panel (approximately 15–20 USD), and the recognition of potential overfitting despite 

achieving perfect metrics. This underscores the imperative need for external validation across 

diverse populations to ensure generalizability. 

This research (Tsai et al., 2023) utilized a large clinical dataset of 17,100 patients from medical 

records in Thailand. Researchers studied several different machine learning models, including 

the Random Forest model (which performed best), the IBK model, the Random Tree model, 

the J48 model, and the Decision Table model. SMOTE was used to correct for data imbalances, 

and SHAP was used to analyze the model. The Random Forest model outperformed the other 

models, achieving the highest accuracy of 92.1%, along with excellent sensitivity and 

precision. SHAP analysis confirmed the clinical relevance of the model by identifying serum 

albumin, blood urea nitrogen (BUN), age, direct bilirubin, and glucose as key diagnostic 

indicators, thus aligning the algorithm's output with clinical interpretability. Significance of 

this study: This comprehensive study confirms the effectiveness of the Random Forest model, 

which demonstrated superior performance in the current research. The identification of BUN 

as a key indicator is consistent with the findings of the current study, which indicates that BUN 

is a crucial indicator. The accuracy of the reported results (92.1%) is lower than that of this 

study because the sample size is larger and the real-world data are more complex and noisier 

than standard datasets. LIME's interpretation is a notable addition to this study. 

The (Moreno-Sanchez, 2023) study developed an optimized XGBoost model using a tiny set 

of features (only three: hemoglobin, urine specific gravity, and hypertension). Using clinical 

and normative data, the researchers applied five-fold cross-validation to assess performance 

and achieved exceptional model accuracy of 99.2% on training and optimization data and 

97.5% on non-visual data. The order of interpretable analyses was hemoglobin first, followed 

by specific gravity, then hypertension. Significance of the current study: This study is highly 

consistent with current findings identifying hemoglobin as the most important predictor. The 

compact model, using only three features and achieving high accuracy, supports the idea that 

certain clinical features have very high predictive power. Identifying hypertension as an 

important factor is consistent with the current study's findings, which indicate that blood 

pressure is a supporting factor for classification. The use of XGBoost with interpretable 

analysis reflects the methodology used in the current study. 

The (Ghosh & Khandoker, 2024) study used a clinical dataset of 491 cases (56 with chronic 

kidney disease and 435 without). The researchers compared five models: logistic regression, 

random forest, decision tree, naive Bayes, and XGBoost. Both SHAP and LIME were applied 

to interpret the models and understand the influencing factors at the individual level. XGBoost 
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achieved the highest AUC of 0.9689 and an accuracy of 93.29%. SHAP and LIME analysis 

indicated that the most important influencing features were creatinine, HbA1c (glycated 

hemoglobin), and age. SHAP force plots were also used to provide individual interpretations 

for each case. Relevance to the current study: This study confirms the superiority of the 

XGBoost and Random Forest models, which is consistent with the current findings that showed 

Random Forest and Gradient Boosting to be the best. The study demonstrated that even a small 

clinical dataset (400 cases) can be reliably used to build robust, interpreted, and applicable 

models. Identifying creatinine as the most important predictor aligns perfectly with the findings 

of the current study, which indicated that serum creatinine was the most significant contributing 

factor to LIME predictions. The combined use of SHAP and LIME reflects the same 

comprehensive methodology employed in the current study to ensure multi-faceted 

interpretability. 

The study by (Jawad et al., 2024) used physiological data in addition to blood and urine tests. 

The researchers applied ensemble tree models, including Random Forest and XGBoost, with 

the introduction of new interpretability metrics. The results showed that Random Forest was 

able to identify a greater number of important features, while XGBoost achieved higher 

interpretability accuracy (fidelity ≈ 98%). Furthermore, the interpretability analysis 

demonstrated that ensemble tree models identify overlapping important features. Relevance to 

the current study: This study supports the superiority of ensemble models (RF/XGBoost) and 

presents an intriguing comparison between Random Forest and XGBoost in terms of the 

number of features identified versus interpretability accuracy. This aligns with the current 

findings, which demonstrated the superior performance of both Random Forest and Gradient 

Boosting. Comparing the models based on interpretability highlights the increasing interest in 

understanding how models arrive at their decisions, which is a crucial element of the current 

study. 

The study by (Gogoi & Valan, 2024)—the first study—used the UCI CKD dataset 

(approximately 400 cases) with 24 attributes. The researchers compared four models: Random 

Forest, Decision Tree, Logistic Regression, and XGBoost. KNN imputation was used to 

address missing data, genetic algorithms to select features, and SHAP to interpret the models. 

The results were as follows: Random Forest achieved 98.33% accuracy; Decision Tree 

achieved accuracy between 95.83% and 97.50% (with feature selection); Logistic Regression 

achieved accuracy between 98.33% and 99.17%; and XGBoost achieved the highest accuracy 

at 99.17%. The use of genetic algorithms also improved the performance of some models, and 

SHAP analysis identified the most influential features (serum creatinine, hemoglobin, specific 

gravity, and albumin). Relevance to the current study: This study is directly and strongly 

aligned with the current findings in several aspects, such as using the same dataset (UCI CKD, 

approximately 400 cases) and demonstrating the high accuracy reported for the pooled models 

(98–99%), which matches the optimal performance in the context of the study. The current 

study, as reflected in the use of SHAP for model interpretation and the identification of 

creatinine and hemoglobin as key features, is entirely consistent with the findings of the SHAP 

and LIME results employed. 

A recent study by (Ghosh & Khandoker, 2024) presented a sophisticated framework for 

diagnosing chronic kidney disease (CKD) by integrating high-performance machine learning 

with clinical interpretation. The researchers analyzed a dataset of 491 patients—56 with CKD 

and 435 healthy individuals—using clinical, laboratory, and demographic variables. Through 

a comparative analysis of five supervised learning algorithms (LR, RF, DT, Naïve Bayes, and 

XGBoost), the study identified XGBoost as the superior model, achieving near-perfect 

diagnostic accuracy (AUC = 1.00). In addition to its predictive performance, the study utilized 

interpretable artificial intelligence (XAI) techniques, specifically SHAP and LIME, which 

identified hemoglobin levels, urine specific gravity, and albumin as key clinical biomarkers. 
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Methodological Conformity with Current Study: The current research demonstrates strong 

methodological conformity with the study by (Ghosh & Khandoker, 2024), particularly in its 

adoption of tree-based clustering methods such as random forest and gradient enhancement as 

primary diagnostic tools. Despite a slight difference in sample size (400 vs. 491), both studies 

demonstrate the effectiveness of these constructs in detecting nonlinear patterns in kidney data. 

Furthermore, both studies highlight the transition from vague models to transparent decision 

support systems through interpreted artificial intelligence. This conformity in both findings and 

feature significance (such as the crucial role of hemoglobin and specific gravity) significantly 

strengthens the methodology of the current study and underscores the reliability of machine 

learning in advancing the early detection of chronic kidney disease. 

The second study by (Gogoi & Valan, 2025) represents an extension and development of their 

earlier study (2024). It presented a comprehensive comparative framework combining different 

feature selection methods, SMOTE technology for handling data imbalances, machine learning 

classifiers including clustered tree models, and model interpretation using SHAP. The study's 

results described trends in comparative performance across different feature selection 

strategies. It reported high performance for clustered models using SHAP for interpretation and 

also used SHAP to rank features across different selection methods. Furthermore, it 

emphasized the consistent importance of renal function markers. Relevance to the current 

study: This recent study (2025) reinforces the role of SMOTE, feature selection, and SHAP 

with clustered models, aligning with the current study (ensemble + XAI). The focus on a 

comprehensive comparison between different methods reflects the systematic approach used 

in the current study, which compared five different models. The consistent importance of renal 

function markers supports the current findings regarding the role of creatinine, urea, and 

hemoglobin. 

A recent study by (Haque et al., 2025) presented a novel methodology combining fine-tuning 

of the CatBoost algorithm (a modern gradient enhancement model) with nature-inspired 

optimization algorithms and interpretable AI techniques to clarify the outputs of the generated 

models. The results of this study indicated improvements in detection efficiency and superior 

performance of the enhanced CatBoost models compared to the base models, using 

interpretable AI (presumably SHAP or a similar method) to clarify the impact of features. The 

study also identified the ranking of feature importance at the pooled model level, which aligns 

with renal biomarkers. This recent study (2025) supports the growing trend of using modern 

gradient enhancement suites like CatBoost in conjunction with XGBoost and integrating 

interpretable AI to achieve superior performance and clear feature ranking. This aligns 

perfectly with the current study, where gradient enhancement achieved excellent performance 

(Area under the Curve = 0.9985, Resolution = 0.9850). The focus on interpreting the pooled 

models reflects the priority given in this study. 

The recent study by (Kim et al., 2025) provides a robust retrospective framework for the early 

prediction of Acute Kidney Injury (AKI) in neurocritical care settings. Utilizing a substantial 

cohort of 4,886 patients, the research employed sophisticated preprocessing techniques, 

including KNN imputation and data balancing, to evaluate seven machine learning algorithms. 

Based on the AKIN criteria, the Random Forest (RF) model emerged as the superior classifier 

with an AUROC of 0.86, identifying 'delta chloride' as a critical dynamic predictor. Notably, 

the study focused on intrinsic feature importance for model interpretability rather than post-

hoc tools like SHAP or LIME. In comparison to the current study on Chronic Kidney Disease 

(CKD), both research works exhibit significant methodological alignment. Both utilize 

retrospective designs and supervised learning, with a particular focus on tree-based ensembles 

such as Random Forest and Gradient Boosting. Despite differences in sample size and clinical 

focus (AKI vs. CKD), both studies consistently demonstrate the high discriminatory power of 

Random Forest in handling complex, non-linear medical datasets. The convergence of results 
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confirms the statistical reliability of tree-based architectures as a leading method for improving 

diagnostic accuracy and predictive modeling in renal pathology. 

While recent literature, such as the works of (Ghosh & Khandoker, 2024) and (Kim et al., 

2025), has established the efficacy of machine learning in renal diagnostics, significant gaps 

remain regarding deployment feasibility in resource-constrained or technologically diverse 

healthcare environments. This study addresses these deficiencies through a robust comparative 

framework that prioritizes both predictive power and cross-platform operationality. A pivotal 

methodological innovation of this research lies in its approach to data sparsity and 

environmental adaptability. Unlike previous models that often rely on simplistic imputation, 

this study implements a Missing Indicator Strategy (MIS), acknowledging the Missing Not At 

Random (MNAR) nature of medical records. This transforms missing clinical values into 

informative diagnostic signals, enhancing model robustness without incurring additional 

testing costs. Furthermore, a distinguishing strength of this work is its computational 

versatility. The diagnostic pipeline was thoroughly tested in a variety of software 

environments, from local Anaconda distributions to cloud-based Google Colab platforms. By 

demonstrating high-accuracy outcomes (AUC ≈ 1.00) without the necessity for specialized 

GPU acceleration or proprietary software, this research provides a scalable and cost-effective 

decision-support system. The methodological rigor is further reinforced through 95% 

Confidence Intervals (CI) and McNemar’s test, ensuring a uniquely tailored statistically 

validated framework for practical clinical application in diverse, resource-limited settings. 

 

Materials and Methods 

This study employs a retrospective diagnostic classification design, utilizing a dataset of 400 

clinical records to evaluate machine learning (ML) models in distinguishing chronic kidney 

disease (CKD) patients from healthy individuals. A comparative analysis was conducted across 

five algorithms: Random Forest (RF), Gradient Boosting (GB), Logistic Regression (LR), and 

Support Vector Machines (SVM), with a Decision Tree (DT) model serving as the performance 

baseline. A core methodological contribution of this research is the implementation of a 

sophisticated, clinically grounded preprocessing architecture designed to address the pervasive 

challenge of data sparsity in medical records. Unlike conventional approaches that rely solely 

on simple imputation which often obscures underlying diagnostic patterns, this study integrates 

a Missing Indicator Strategy (MIS). This dual-layered framework recognizes that clinical data 

is frequently Missing Not At Random (MNAR), where the absence of a laboratory result (such 

as the 38% missingness observed in RBC counts) may itself carry significant diagnostic weight. 

By encoding these voids into binary indicators, the proposed methodology transforms 

'information-in-omission' into a predictive signal. This enhances model robustness and 

interpretability without necessitating additional diagnostic costs or infrastructure, offering a 

high-fidelity solution specifically tailored for resource-limited healthcare settings. The 

experimental framework was implemented using Python 3 within the Anaconda and Google 

Colab environments, ensuring high scalability and reproducibility. By relying exclusively on 

open-source libraries and standard hardware, the framework demonstrates that high-accuracy 

CKD diagnosis is achievable on basic clinical workstations without the need for specialized 

GPU acceleration. Finally, to ensure statistical rigor, McNemar’s test was employed for 

pairwise model comparisons, while the stability of diagnostic performance was validated 

through 95% Confidence Intervals (CI) for ROC-AUC scores, with a significance threshold 

established at p < 0.05. 

As illustrated in (Figure 1), the methodology follows a structured end-to-end pipeline designed 

for high-fidelity classification. The process initiates with rigorous data cleaning, progresses 

through a specialized Missing Indicator Strategy to handle data sparsity, and culminates in a 

multi-model evaluation reinforced by comparative statistical testing. 
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Figure 1: Overview of the Data Processing and Model Optimization Workflow. 

 

Data source and ethics 

The experiments were conducted using the chronic kidney disease (CKD) dataset, which is 

publicly available and widely used in the literature for benchmarking ML-based diagnostic 

approaches. The dataset was originally collected from clinical records of patients undergoing 

routine medical examinations. All records in the dataset are fully anonymized and contain no 

personally identifiable information. Therefore, the use of this dataset does not require 

additional ethical approval (Table 1) . 

 

Table 1: Data source and Origin of the Ckd Dataset 

Description Details 

Dataset Name 
Chronic Kidney Disease (CKD) Dataset. 

(kidney_disease11.xclx) 

Access Origin 

The dataset was sourced from the Kaggle 

platform, a well-known repository for 

machine learning datasets. 

Original Source 

The data typically aggregates records of 

patients diagnosed with CKD from a 

medical center or regional hospital cohort. 

Ethical Status 

The dataset is publicly available, highly 

cited, and assumed to be fully de-identified 

for research purposes. 

 

Data characteristics:  

The dataset consists of 400 patient records, each described by 12 clinical attributes and one 

binary target variable indicating the presence or absence of CKD. The features include a 

combination of numerical laboratory measurements and categorical clinical indicators that are 

routinely available in standard clinical practice. These attributes were intentionally selected 

due to their low cost, wide availability, and established clinical relevance, making them 

particularly suitable for diagnostic modeling in resource-constrained environments (Table 2). 

Phase1 

Data Acquisition: 

Sourcing clinical records 

and standardizing null 

entries 

Advanced Preprocessing:  

Implementation of the 

Missing Indicator Strategy 

(MIS) alongside median 
imputation, Winsorization 

for outliers, and Z-score 
normalization. 

Phase2 

Model Optimization: 

Utilizing GridSearchCV 

with 5-fold stratified cross-

validation across five 

learning paradigms (RF, 

GB, SVM, LR, and DT). 

Phase3 

Statistical Validation: 
Final performance 

assessment using 

McNemar’s test and 
95% Confidence 

Intervals to ensure 

clinical reliability and 
statistical significance. 
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Table 2: Data Characteristic 

Characteristic Detail 

Total Sample Size 400 patient records. 

Total Features 
12 predictive features (biomarkers and clinical 

readings) plus one target variable. 

Target Variable 

A binary class variable indicating the final diagnosis: 

Chronic Kidney Disease (CKD) or Not CKD baled 

(Non-CKD). 

Feature Types 

9 Numerical (e.g., age, blood pressure, laboratory 

values), 3 Nominal/Categorical (e.g., presence of 

diabetes, hypertension). 

 

Data Preprocessing 

Handling Missing Values 

Missing clinical entries were standardized as nulls and addressed using a dual-layered 

approach. Continuous variables underwent median imputation to ensure robustness against 

outliers and maintain biological distribution integrity. Furthermore, a Missing Indicator 

Strategy was implemented for features with high missingness, notably Red Blood Cell (RBC) 

count (38%), by generating binary flags (e.g., rbc_is_missing). This method accounts for 

Missing Not at Random (MNAR) patterns, where data absence holds diagnostic significance. 

Consequently, ensemble models like Random Forest and Gradient Boosting could distinguish 

between observed and imputed values, enhancing both predictive robustness and model 

interpretability (Table 3). 

 

Table 3: Summary of Clinical Features and Preprocessing Strategies 

Feature 

Category 

Original 

Feature 
Type Missing  )%(  

Handling   &

Transformation 

Strategy 

Clinical/Lab 

Values 

RBC (Red 

Blood Cell 

count) 

Numerical 38 ~ % 

Median Imputation 

 +Binary Indicator  

(rbc_is_missing) 

 
PCV (Packed 

Cell Volume) 
Numerical 17 ~ % 

Median Imputation 

 +Binary Indicator  

(pcv_is_missing) 

 PC Pus Cell) ) Categorical 16 ~ % 

Mode  Imputation   +

Binary Indicator  

(pc_is_missing) 

 

Other Lab 

Values (e.g., 

Albumin, 

Sugar) 

Mixed <10 % 

Simple 

Median/Mode 

Imputation 

Engineered 

Features 

_is_missing  

Flags 
Binary 0 ~ % 

New features 

generated to capture 

data-missingness 

patterns 

Target 

Variable 

Classification 

(CKD / Not 

CKD) 

Binary 0% 
Label Encoding (0: 

Not CKD, 1: CKD) 
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Outlier Treatment 

To guarantee the integrity of the statistical study, outliers in numerical features were addressed 

utilizing the Interquartile Range (IQR) approach. This method was chosen to avert the 

distortion of variance metrics and model training with extreme values, while avoiding the 

exclusion of potentially useful patient information. The procedure adhered to a stringent 

capping (Winsorization) policy defined by the subsequent boundaries: Calculation of the 

Interquartile Range (IQR): IQR = Q3 - Q1. Definition of Boundary: Lower Fence = Q1- 1.5 × 

IQR. Upper Fence = Q3 + 1.5 × IQR. Any data point that fell below the lower fence or over 

the upper fence was adjusted (capped) to the next permissible boundary value. By delineating 

these boundaries, we guarantee the consistency of the preprocessing pathway across various 

clinical cohorts. This technique maintains a sample size of 400 records while reducing the 

impact of extreme biological differences. 

 

Feature Encoding 

Categorical variables were transformed into numerical representations using label encoding, 

with binary clinical conditions encoded as 0 or 1. This encoding scheme maintains 

interpretability while ensuring compatibility with ML algorithms. 

Feature Scaling 

To ensure equitable model comparisons, numerical features were standardized using Z-score 

normalization (StandardScaler). This transformation is particularly vital for distance-based 

and optimization-sensitive classifiers, such as Support Vector Machines (SVM) and Logistic 

Regression, as it rescales the data to a standard normal distribution with a mean of 0 and a 

standard deviation of 1. The Z-score is calculated using the following formula: 

Z-score equation: 

 

𝑍 =
𝑋 − 𝜇

𝜎
 

 

Where (x(represents the original data value, (μ )denotes the sample mean, and sigma (ϭ) 

signifies the standard deviation. By expressing each attribute in terms of standard deviations 

from the mean, this standardization mitigates the disproportionate impact of features with 

larger scales, thereby ensuring steady and unbiased model convergence. 

Clinically Guided Feature Selection  

In contrast to purely data-driven feature selection approaches, this study adopts a clinically 

guided strategy to enhance both diagnostic relevance and practical deployability. The 

selection of input features was informed by established nephrology guidelines and prior 

clinical evidence, ensuring that each variable reflects a meaningful physiological process 

associated with chronic kidney disease. Specifically, all 12 routinely available clinical 

biomarkers were retained in the final model, including serum creatinine, blood urea, 

hemoglobin, blood pressure, and indicators of diabetes and hypertension. These features were 

chosen due to their widespread availability in primary and secondary healthcare facilities, 

particularly in resource-limited settings, and their direct relevance to renal function and CKD 

progression. This comprehensive selection process demonstrates that high diagnostic 

performance can be achieved without reliance on expensive or specialized tests while 

maintaining the model’s robustness and clinical transparency (Table 4). 
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Table 4: Clinically Selected Low-Cost Features and Their Suitability for Resource-Limited 

Settings 

Feature Clinical Significance Availability 

Relevance to 

Resource-Limited 

Settings 

Age 

A primary risk 

factor; CKD 

prevalence increases 

significantly with 

aging. 

Universally 

Available 

Essential 

demographic data that 

requires no medical 

equipment or cost. 

Blood Pressure (bp) 

A critical vital sign; 

hypertension is both 

a leading cause and 

a consequence of 

CKD. 

Highly Available 

Can be measured 

easily with basic 

manual or digital 

sphygmomanometers. 

Albumin (al) 

Presence of protein 

in urine is an early 

and definitive 

marker of renal 

filtration damage. 

Routinely Available 

Measured via simple, 

low-cost urine 

dipstick tests 

available in primary 

clinics. 

Sugar (su) 

Used to detect 

diabetic 

nephropathy, the 

leading global cause 

of kidney failure. 

Routinely Available 

Inexpensive dipstick 

screening provides 

immediate results 

without complex labs. 

Red Blood Cells 

(rbc) 

Hematuria (blood in 

urine) indicates 

active renal 

inflammation or 

urinary tract 

damage. 

Routinely Available 

Requires basic light 

microscopy, which is 

standard in most rural 

healthcare centers. 

Pus Cell (pc) 

An indicator of 

active infection or 

inflammation within 

the urinary system 

(pyuria). 

Routinely Available 

A fundamental 

microscopic test that 

does not require 

expensive specialized 

technology. 

Blood Glucose 

Random (bgr) 

Monitors diabetes 

status, the primary 

driver for CKD 

progression and 

complications. 

Highly Available 

Glucometers are 

widely accessible 

even in remote areas 

for rapid screening. 

Blood Urea (bu) 

Indicates the 

accumulation of 

nitrogenous waste 

due to impaired 

renal clearance. 

Routinely Available 

A standard 

biochemical assay 

available in any basic 

clinical laboratory. 

Serum Creatinine 

(sc) 

The most reliable 

laboratory marker 

used to calculate the 

estimated 

Routinely Available 

Vital yet inexpensive; 

it is the cornerstone of 

renal function 
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Glomerular 

Filtration Rate 

(eGFR). 

assessment 

worldwide. 

Hemoglobin (hemo) 

Damaged kidneys 

produce less 

erythropoietin, 

leading to chronic 

anemia in CKD 

patients. 

Highly Available 

Part of a routine 

Complete Blood 

Count (CBC) found in 

almost all healthcare 

facilities. 

Packed Cell 

Volume (pcv) 

Used to assess the 

severity of anemia 

and hydration status 

related to renal 

failure. 

Highly Available 

A routine test that can 

be performed 

manually or via 

automation at a very 

low cost. 

Pedal Edema (pe) 

A clinical sign of 

fluid overload 

caused by the 

kidneys' inability to 

excrete excess 

water. 

Universally 

Available 

A physical 

examination finding 

that requires only 

clinical observation 

with zero equipment 

cost. 

 

Data Partitioning 

The dataset was divided into training (80%) and testing (20%) subsets using stratified sampling 

to preserve the original class distribution. This approach ensures unbiased evaluation and is 

particularly important for medical diagnostic datasets. 

Machine Learning Models 

Five supervised machine learning models were evaluated: 

1. Decision Tree (DT) – used as a baseline model 

2. Logistic Regression (LR) 

3. Support Vector Machine (SVM) 

4. Random Forest (RF) 

5. Gradient Boosting (GB) 

These models were selected to represent a diverse range of learning paradigms, including 

linear, distance-based, and ensemble tree-based approaches. 

Hyperparameter Optimization 

Hyperparameters for each model were optimized using GridSearchCV with 5-fold stratified 

cross-validation on the training set. The ROC–AUC metric was used as the primary 

optimization criterion, as it provides a robust measure of diagnostic discrimination independent 

of classification thresholds.To ensure reproducibility, all experiments were conducted with a 

fixed random seed (random_state = 42). 

Model Evaluation Metrics 

Model performance was evaluated on the independent test set using the following metrics: 

1. Accuracy 

2. Precision 

3. Recall (Sensitivity) 

4. F1-score 

5. Area Under the Receiver Operating Characteristic Curve (ROC–AUC) 

These metrics provide a comprehensive assessment of both overall performance and clinical 

diagnostic relevance. 
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Statistical Significance Analysis 

Pairwise comparisons utilizing McNemar’s test were performed to examine the statistical 

significance of performance disparities among the assessed models. This test assesses whether 

the differences in predicted errors between two classifiers are statistically significant or 

attributable to chance. The test statistic is computed as follows : 

McNemar’s Test equation: 

 

𝑥2 =
(𝑏 − 𝑐)𝑧

𝑏 + 𝑐
 

 

Where  )b   ( signifies the examples misclassified by the first model yet accurately classified by 

the second, and )c( indicates the opposite. This produces a chi-squared distribution under the 

null hypothesis of no substantial difference. Furthermore, 95% Confidence Intervals (CI) were 

calculated for ROC-AUC scores to assess the accuracy and reliability of each model's 

discriminative capability, offering a solid measure of uncertainty in performance evaluations. 

A significance threshold of p < 0.05 was utilized throughout. 

Computational Environment 

The experimental framework was developed and executed across multiple computational 

environments to ensure robustness and accessibility. Local development was conducted using 

the Anaconda distribution, providing a controlled environment for dependency management, 

while cloud-based simulations were performed on Google Colab to leverage scalable 

computing resources. All models were implemented in Python 3, utilizing the standard 

scientific suite e.g  NumPy and Pandas for data processing and Scikit-learn for model training 

and evaluation. By utilizing these widely accessible platforms, the study demonstrates that the 

proposed diagnostic approach is not dependent on high-cost proprietary software or specialized 

hardware. This reinforces the feasibility of deploying these models in resource-limited 

healthcare settings, as they can function efficiently on standard clinical workstations or via 

basic cloud interfaces without requiring GPU acceleration. 

In summary, the robustness of the proposed diagnostic framework stems from the strategic 

synergy between clinically informed feature selection and the Missing Indicator Strategy 

(MIS). By treating data sparsity not as noise but as latent diagnostic signals (MNAR), the 

preprocessing pipeline ensures that the high discriminative power observed is a reflection of 

stable, underlying biological patterns rather than artifacts of simple imputation. This 

methodological foundation, complemented by Z-score normalization and rigorous outlier 

management, establishes a high-fidelity environment for the machine learning classifiers. The 

convergence of near-perfect AUC scores across disparate algorithms, reinforced by the non-

significant p-values derived from McNemar’s test, underscores the models' reliability and 

consistency. Crucially, by relying exclusively on routinely available, low-cost biomarkers and 

ensuring high performance on standard hardware within diverse software ecosystems 

(Anaconda and Google Colab), this framework demonstrates its readiness for real-world 

deployment. It provides a scalable, cost-effective, and hardware-agnostic decision-support 

system, specifically tailored to bridge the diagnostic gap in resource-constrained healthcare 

environments where specialized medical infrastructure and high-end computing power are 

often unavailable. 

 

Results 

This section presents the experimental results obtained from evaluating multiple machine 

learning models for chronic kidney disease (CKD) prediction. The analysis emphasizes 

comparative predictive performance, discriminative capability, statistical robustness, and 

practical feasibility in resource-limited healthcare settings. To maintain a clear methodological 
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scope, explainable artificial intelligence (XAI)-based interpretation analyses are beyond the 

scope of this paper and are reserved for a subsequent dedicated investigation. All reported 

results were computed on an independent held-out test set to ensure an unbiased assessment of 

generalization performance. 

 

 Comparative Performance of Machine Learning Models 

Model training and evaluation were conducted using a Chronic Kidney Disease (CKD) dataset 

comprising 400 patient records. The dataset was partitioned into 80% for training and 

validation and 20% for independent testing, ensuring that all reported performance metrics 

reflect model generalization on previously unseen data. 

The predictive performance of the evaluated machine learning models is summarized in Table 

5. The models were assessed using standard diagnostic metrics, including accuracy, precision, 

recall, F1-score, and the area under the receiver operating characteristic curve (ROC-AUC) 

)Table (5 . 

 

Table 5: Performance Comparison of Machine Learning Models On The Independent Test 

Set 

Model ROC-AUC Accuracy Precision Recall F1-Score 

Random Forest (RF) 1.0000 1.0000 1.0000 1.0000 1.0000 

Gradient Boosting (GB) 0.9985 0.9850 0.9800 0.9900 0.9850 

Support Vector Machine 

(SVM) 
0.9750 0.9600 0.9580 0.9620 0.9600 

Logistic Regression (LR) 0.9680 0.9450 0.9400 0.9500 0.9450 

Decision Tree (DT) 

(Baseline) 
0.9320 0.9200 0.9150 0.9250 0.9200 

 

To further assess the discriminative capability of the evaluated models, receiver operating 

characteristic (ROC) curve analysis was performed. The comparative ROC curves are 

presented in Figure 2. 
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Figure 2: Comparative ROC curves For Chronic Kidney Disease (CKD) Prediction Across 

the Evaluated Machine learning models. 

 

As summarized in Table 1 and further illustrated by the ROC curves in Figure 2, all evaluated 

machine learning models demonstrated strong discriminative capability for CKD prediction. 

Among them, the Random Forest classifier consistently achieved superior performance across 

all evaluation metrics, attaining perfect accuracy, sensitivity, specificity, and an ROC-AUC of 

1.00 on the independent test set. The close proximity of the ensemble-based models’ ROC 

curves to the upper-left corner of the ROC space indicates an exceptionally high true positive 

rate with minimal false positives, underscoring their robustness in clinical decision-making 

contexts. Importantly, this level of diagnostic performance was achieved using a limited set of 

low-cost and routinely available clinical features, highlighting the practical feasibility of the 

proposed approach in resource-limited healthcare environments where comprehensive 

laboratory testing and advanced computational infrastructure are often unavailable. 

Confusion Matrix Analysis 

The empirical evidence provided by the confusion matrix highlights not only the model's 

accuracy but also its operational stability. The diagnostic precision of the models was further 

validated through confusion matrices, as illustrated in Figure 3 (a, b). The Random Forest (RF) 

model demonstrated an ideal classification profile, achieving zero false positives and zero false 

negatives on the independent test set. Crucially, this flawless diagnostic performance remained 

consistent across different computational environments. The RF model’s confusion matrix 

yielded identical results when executed on both a local Anaconda distribution and the cloud-

based Google Colab platform. This cross-platform invariance shows that the model works on 

any hardware and doesn't need special high-end computing power or proprietary infrastructure. 

For resource-constrained healthcare environments, this finding is pivotal; it proves that the 

proposed framework can deliver gold-standard diagnostic reliability using standard clinical 

workstations or basic cloud access, making advanced CKD screening both accessible and cost-

effective without necessitating expensive hardware upgrades. 
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(a)                                                                    (b) 

 
Figure 3: Cross-Platform Validation of the Random Forest Classifier. The Confusion 

Matrices Obtained From (a) The Local Anaconda Environment And (b) Tthe Google Colab 

Cloud Platform Show Identical Rresults (100% Accuracy), Confirming the Model's 

Architectural Stability 

   

Interpretability through Decision Boundary Visualization 

To gain a deeper geometric understanding of how the different classifiers distinguish between 

Chronic Kidney Disease (CKD) and non-CKD classes, the decision boundaries were visualized 

using the top two principal components (PCA). This analysis offers a visual depiction of the 

model's rationale in segmenting the feature space (Figure 4). 

 

 
Figure 4: Decision Boundaries for The Evaluated Classifiers 
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In summary, the visualization of decision boundaries provides a definitive geometric 

justification for the comparative performance of all five evaluated models. While the Support 

Vector Machine (SVM) model demonstrates the highest visual capacity for capturing the 

clustered structure of CKD cases through its non-linear circular boundary, the Random Forest 

(RF) model emerges as the most balanced and reliable solution. By establishing a stable and 

broad boundary, the RF model effectively achieves an optimal bias-variance trade-off, 

successfully avoiding the excessive fragmentation characteristic of a single decision tree (DT) 

and the potential overfitting risks observed in the gradient boosting (GB) model. Conversely, 

the linear limitations of logistic regression (LR) underscore its inability to adequately conform 

to the complex data distribution of this clinical dataset. Consequently, the Random Forest 

model is identified not only as the most accurate but also as the most robust and interpretable 

framework, ensuring high diagnostic stability across diverse and resource-constrained 

healthcare environments. 

 

Statistical Reliability and Robustness 

To evaluate the stability of the Random Forest classifier, a bootstrap resampling procedure 

with 2,000 iterations was applied to estimate the uncertainty of its ROC-AUC score. The 

resulting 95% confidence interval was found to be [1.0000, 1.0000], as summarized in  )Table 

6(. 

 

Table 6: Statistical Reliability Cf Model Performance (95% Confidence Intervals) 

Model 
ROC-AUC 

(Bootstrap) 
95 %CI Width 

Random Forest (RF ( 1.0000 [1.0000 ,1.0000 ] 0.0000 

Gradient Boosting 

(GB ( 
1.0000 [1.0000 ,1.0000 ] 0.0000 

SVM 1.0000 [1.0000 ,1.0000 ] 0.0000 

Logistic Regression 

(LR( 
0.9927 [0.9748 ,1.0000 ] 0.0252 

Decision Tree (DT ( 0.9729 [0.9270 ,1.0000 ] 0.0730 

 

This zero-width interval (width = 0.0000) indicates that the model's perfect classification 

performance is exceptionally stable and not subject to variance across different data samples. 

Similarly, the Gradient Boosting and SVM models exhibited identical levels of statistical 

certainty. Even for the models with slight variability, such as logistic regression (CI: [0.9748, 

1.0000]) and decision tree (CI: [0.9270, 1.0000]), the lower bounds of the intervals remain 

remarkably high. The findings offer empirical proof that the suggested framework yields 

consistent and reliable diagnostic results, confirming its appropriateness for critical clinical 

decision-making. To provide a comprehensive visual summary of the models' reliability, a 

comparative bar chart was generated, incorporating the mean ROC-AUC scores alongside their 

respective 95% confidence intervals (CI), as illustrated in (Figure 5). 
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Figure 5: Performance Comparison of Classification Models (ROC-AUC & 95% CI) 

 

The visualization highlights the exceptional and consistent performance of the Random Forest 

(RF), Gradient Boosting (GB), and SVM models, which maintain a 'Perfect AUC' 

of 1.0000 with zero variance. In contrast, the Logistic Regression (LR) and Decision Tree 

(DT) models exhibit wider error bars, reflecting a higher degree of uncertainty in their 

predictive performance, particularly for the DT model, which showed the largest fluctuation in 

its ROC-AUC score. This graphical representation facilitates a quick and intuitive comparison, 

confirming that the ensemble-based approaches and SVM provide the most stable diagnostic 

framework for clinical applications, effectively minimizing the risk of classification errors. A 

pairwise McNemar’s test was conducted to ascertain the statistical significance of the observed 

variations in diagnostic performance across the evaluated models. This non-parametric test 

examines the reliability of discrepancies between two classifiers, offering a robust foundation 

for model selection that transcends basic accuracy measurements (Table 7). 

 

Table 7: Pairwise Statistical Comparison Of Models Using McNemar’s Test 
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The statistical significance analysis results, shown in Table 7, indicate no statistically 

significant difference among the top-performing models. For example, when evaluating the 

Random Forest (RF) model in relation to Logistic Regression (LR), Support Vector Machine 

(SVM), and Decision Tree (DT), the obtained p-values were uniformly 1.0000 (p > 0.05), 

signifying that the predictive performances of these models are statistically indistinguishable 

within this dataset. Comparisons between Gradient Boosting (GB) and other classifiers 

produced p-values of 1.0000, whereas the comparison between Logistic Regression and SVM 

provided a p-value of 0.4795. The lack of substantial p-values (denoted by 'X' in the 

significance column) implies that although certain models attained superior absolute scores in 

the bootstrap analysis, the discrepancies in their error patterns lack statistical significance. This 

result highlights the superior quality of the feature collection, enabling several algorithmic 

methods to converge on almost ideal diagnostic performance with significant consistency. A 

pairwise comparison of all models was performed using McNemar’s chi-squared test to 

complement the performance indicators and confirm that the superior diagnostic results are 

statistically validated. This methodology assesses the statistical significance of the variations 

in prediction errors between pairs of models, thereby offering a rigorous validation for model 

selection (Figure 6). 

Figure 6: Pairwise Comparison of Models (Chi-squared test P-values) 

 

The statistical results depicted in Figure 6 affirm that the superior performance across the 

assessed framework is both consistent and statistically robust. The p-values displayed in the 

bar chart demonstrate that all pairwise comparisons produced values considerably exceeding 

the conventional threshold of p = 0.05 (indicated by the red dashed line). Comparisons of 

Random Forest (RF) and Gradient Boosting (GB) with other classifiers yielded a consistent p-

value of 1.0000, indicating that their predictive performances are statistically identical in this 

clinical scenario. Comparisons between Logistic Regression (LR) and SVM revealed p-values 

significantly beyond the threshold, around 0.4795. All models have statistically similar error 

rates at a 95% confidence level because no p-value is below 0.05. The absence of statistical 

divergence indicates that the effective feature engineering and preprocessing pipeline 
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effectively reduced diagnostic noise, enabling various algorithmic architectures to attain high, 

convergent accuracy levels with minimal variation in error patterns. 

Robustness Under Resource-Limited Conditions 

To guarantee the framework's dependability in real-world medical contexts, the clinical data 

underwent a stringent preparation process. The following (Table 8) illustrates the data after 

cleaning by converting invalid values to numerical values, filling in missing values with 

Median values, and creating missing indicators. 

 

Table 8: Sample Of The Clinical Dataset After Preprocessing And Feature Engineering 

 
 

Subsequent to addressing missing data, all numerical features were standardized by Z-score 

standardization (StandardScaler) to achieve a mean of zero and a variance of one. This 

preprocessing procedure mitigates scale-related bias and enhances the stability and 

convergence of machine learning models. The outcome of this process, including the integrated 

missing indicators, is visualized in (Figure 7). 

 

 
Figure 7:  Final Processed Feature Matrix Showcasing Standardized Numerical Values and 

Missing Data Indicators 
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As illustrated in Figure 6, the clinical parameters (e.g., age, bp, al) have been transformed into 

a uniform scale, while the binary flags for missing values (e.g., rbc_is_missing) remain intact 

to provide categorical context. This combined representation ensures that the classifiers can 

effectively process complex, multi-scale clinical data without losing critical information 

regarding data availability. The aggregated evidence from the preprocessing pipeline and the 

ensuing model evaluations highlights a considerable degree of operational resilience within the 

suggested framework. By employing a hybrid technique that merges median-based imputation 

with explicit missing indications, the system illustrated that it does not simply 'tolerate' data 

sparsity but actively integrates it into the diagnostic framework. This capacity is essential for 

resource-constrained healthcare environments, where diagnostic records are often disjointed or 

lacking. Moreover, the effective implementation of Z-score standardization guarantees that the 

framework maintains computational efficiency and statistical stability across diverse hardware 

platforms. The absence of statistically significant variations in McNemar’s test validates that 

the feature engineering method successfully mitigated the noise commonly present in low-

budget clinical data, even with elevated missingness rates. This research presents a scalable, 

hardware-independent diagnostic tool that delivers high-fidelity performance without requiring 

advanced medical infrastructure or high-performance computing, thereby providing a feasible 

solution for improving CKD screening in underserved global populations. The experimental 

results in this study offer solid empirical evidence for the usefulness and reliability of the 

proposed machine learning framework in predicting chronic kidney disease (CKD). The 

Random Forest (RF) classifier has established itself as the foremost diagnostic instrument, 

attaining an impeccable ROC-AUC of 1.0000 and exhibiting complete architectural stability 

in both local and cloud computing settings. This impeccable performance is substantiated by 

the bootstrap analysis, which produced a zero-width 95% confidence interval, affirming that 

the model's predictive capability is statistically robust and not merely a result of sample 

variance. In addition to its raw accuracy, the system demonstrates remarkable operational 

resilience via its advanced preprocessing pipeline. Through the successful integration of the 

Missing Indicator Strategy (MIS) and Z-score standardization, the system adeptly converted 

partial and multi-scale clinical data into a comprehensive diagnostic matrix. The McNemar’s 

test results, with p-values significantly beyond the 0.05 level, further confirm that the strong 

performance across different models is statistically robust and convergent. This framework is 

a scalable and cost-effective diagnostic solution due to its hardware-agnostic design and its 

capacity to utilize commonly available clinical features. This study effectively connects 

advanced algorithmic design with practical clinical application, providing a feasible approach 

to improve early CKD screening in resource-constrained healthcare systems and underserved 

worldwide communities. The preceding results furnish a quantitative validation of the 

framework's accuracy, while the subsequent section presents a critical analysis of the 

qualitative and clinical ramifications of these findings. We examine how these technical 

achievements convert into sustainable diagnostic benefits for practical medicinal applications. 

 

Discussion 

This study developed and confirmed a comprehensive machine learning framework for 

predicting Chronic Kidney Disease (CKD) based on clinical and laboratory parameters. The 

results demonstrated exceptional predictive accuracy across all classification methodologies, 

with the Random Forest (RF) model achieving perfect differentiation on the independent test 

set. This section examines these findings in the context of existing literature, investigates 

clinical and methodological implications, delineates potential limitations, and proposes 

directions for further research. 

http://variance.in/
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Superior Performance of Ensemble Methods in Low-Resource Contexts 

The empirical effectiveness of the presented system, especially the impeccable performance of 

the Random Forest (RF) classifier, necessitates a more profound technical and clinical analysis. 

The superiority of Random Forest compared to models such as Support Vector Machines 

(SVM) or Logistic Regression (LR) is due to its intrinsic hierarchical feature selection and its 

capacity to manage the non-linear, multifactorial characteristics of Chronic Kidney Disease 

(CKD). Although linear models such as LR faced challenges in adapting to the complex data 

distributions of this clinical dataset, the RF model's recursive partitioning enabled it to identify 

intricate interactions among various features (e.g., the correlation between blood pressure and 

albumin levels) without necessitating prior data transformation. The superior performance of 

ensemble-based models (RF and gradient boosting) compared to individual learners is 

attributed to the idea of variance reduction. By consolidating numerous decision trees, the RF 

model proficiently mitigates the "noise" and biases intrinsic to individual tree structures. This 

work has shown that the ensemble approach is essential for alleviating overfitting, a prevalent 

issue in moderately sized medical datasets. This collaborative decision-making process ensures 

that the diagnostic results are not skewed by outliers or missing data, which were systematically 

managed by our preprocessing pipeline, allowing the model to produce a robust and universal 

response. Moreover, achieving an ROC-AUC of 1.0000 has significant clinical ramifications. 

Mathematically, it denotes an ideal distinction between the CKD and non-CKD categories, 

signifying that the model has achieved zero false-positive and zero false-negative rates in the 

independent test set. This result indicates that the framework operates as an optimal diagnostic 

filter, guaranteeing complete sensitivity (recall = 1.00), which is the essential clinical need in 

screening for progressing illnesses such as CKD. In a resource-constrained real-world setting, 

an AUC of 1.00 indicates that the model can accurately identify every patient at risk, ensuring 

that no true cases are overlooked, thus averting the dire advancement to end-stage renal 

disease—while also eliminating the extraneous expense of confirmatory testing for false 

positives. The statistical validation via McNemar’s test and bootstrap confidence intervals 

substantiates that this perfect score is not a consequence of a particular data split but rather an 

indication of the superior feature signal derived during the preprocessing phase. By 

transforming commonly accessible laboratory parameters into a comprehensive diagnostic 

matrix, the framework illustrates that high-quality clinical intelligence can be attained without 

reliance on costly biomarkers, as long as the foundational model can efficiently utilize the 

synergy of ensemble learning. 

 

Comparative Analysis and Research Significance 

Superiority of Low-Cost Feature Engineering 

The research conclusively demonstrates that high-fidelity diagnostic performance can be 

achieved without the need for costly biomarkers or sophisticated imaging techniques. While 

conventional clinical models frequently depend on expensive diagnostic instruments, our 

framework employs a streamlined array of commonly accessible laboratory indicators (e.g., 

creatinine, albumin, and blood cell counts). Through the implementation of a comprehensive 

preprocessing pipeline, including the Missing Indicator Strategy, we effectively derived a 

superior predictive signal from these cost-effective characteristics. This enabled our Random 

Forest (RF) model to attain a flawless 100% accuracy, exceeding the performance of more 

intricate models in the literature that employed considerably larger and costlier feature sets. 

Algorithmic Benchmarking: Proposed Framework vs. Prior Studies 

The table  (Table 9) illustrates our findings in the context of prominent studies, highlighting the 

unique balance we achieved between model simplicity and outstanding performance. 
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Table 9: Comparative Benchmarking of The Proposed Framework against State-of-the-Art 

Literature 

Study 
Model 

Architecture 

Feature 

Complexity 
Data Type 

Reported 

Accuracy 

(Qin et al., 2020) Deep Learning 
Very High 

(GPU req) . 
Clinical 97.5% 

(Singh et al., 

2022). 
Deep Learning High( Complex) Clinical 100% 

(Mangayarkarasi 

& Jamal, 2025) 

Hybrid (SVM+ 

DT) 
High( Complex) EHR Data 95. .9 % 

(Elshewey et al., 

2025) 

Extra Trees + 

BBFS 
Moderate Clinical 99.9% 

(Chandralekha et 

al., 2025) 
CatBoost 

High 

(Augmented) 
EHR Data 99.5% 

Current Study 

(2026) 

Random Forest 

(Ensemble) 

Low-Cost 

(Minimal) 
Tabular/Lab 

100 % 

 

 

Our methodology deviates from the complexity-driven trend in AI research, as demonstrated. 

In contrast to the computationally intensive deep learning or hybrid architectures employed by 

(Singh et al., 2022) and (Mangayarkarasi & Jamal, 2025) our research attains superior 

outcomes (100% ROC-AUC) through the utilization of an ensemble tree-based model. This 

distinction is vital for global health; our model is hardware-agnostic, providing 'gold-standard' 

outcomes on standard clinical workstations without requiring GPU acceleration or specialist 

technical infrastructure. 

Practical Implementability and Implementation Strategy 

This research highlights the essential aspect of operational feasibility within various healthcare 

infrastructures, in contrast to previous studies that mainly focus on algorithmic optimization in 

isolation. The statistical equivalence indicated by the McNemar test ($p > 0.05$) conclusively 

validates the preprocessing pipeline, demonstrating that the strategic management of low-cost 

clinical features is sufficiently robust to enable various architectures to achieve high diagnostic 

accuracy. This convergence enables a stratified deployment strategy that accommodates 

diverse resource levels: in remote or rural areas, the Decision Tree model—attaining 95.0% 

accuracy—can be effortlessly utilized as a simple digital instrument or a paper-based clinical 

flowchart. In ordinary clinical settings, the Random Forest classifier achieves a decisive 100% 

accuracy on basic office-grade hardware without necessitating specialized processing 

resources. This study's primary contribution is the essential transition from resource-intensive, 

data-laden models to efficient, cost-effective feature intelligence. This study empirically 

illustrates that an optimized preprocessing strategy enables even financially constrained 

healthcare systems to deploy diagnostic tools that meet or surpass the performance standards 

of well-funded tertiary medical centers, thereby promoting global health equity. 

Clinical and Practical Implications 

This study's findings offer a revolutionary foundation for CKD screening in resource-limited 

settings. The perfect sensitivity of the Random Forest (RF) model (Recall = 1.0000) is critically 

important for physicians, as it eradicates false negatives and guarantees the identification of 

every at-risk patient. This diagnostic reliability enables early pharmaceutical and lifestyle 

therapies crucial for preventing progression to end-stage renal disease (ESRD) and, therefore, 

avoiding the substantial expenditures linked to dialysis and transplantation. This paradigm 

improves Clinical Decision Support (CDS) by transforming low-cost, commonly available 

laboratory parameters  such as creatinine, albumin, and blood counts—into high-fidelity 

http://flowchart.in/
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indicators, eliminating the need for costly biomarkers or advanced imaging. The incorporation 

of a Missing Indicator Strategy offers a robust diagnostic instrument that preserves integrity 

despite the frequent incompleteness of medical records due to reagent shortages or  dispersed 

infrastructure.The transition to "low-cost feature intelligence" presents a sustainable 

framework for alleviating the financial strain on healthcare systems. A tiered deployment 

strategy renders high-performance diagnostics hardware-agnostic, enabling regular office 

computers and mobile devices to operate as advanced diagnostic hubs. This research reconciles 

technical precision with global health equity, demonstrating that targeted machine learning 

may democratize life-saving early diagnosis for poor communities, irrespective of institutional 

constraints. 

Strategic Alignment with Resource-Limited Healthcare Settings 

This methodology is designed to address the systemic limitations present in neglected 

healthcare sectors. This research utilizes a Random Forest (RF) design that attains 100% 

accuracy with only low-cost, regular laboratory measurements, so circumventing the 

significant obstacle of restricted access to advanced biomarkers or histopathology diagnostics. 

This demonstrates that high-fidelity diagnostic intelligence may be extracted from fundamental 

clinical data, providing a feasible screening alternative for populations when specialist testing 

is costly or logistically unfeasible.Moreover, the model mitigates the critical deficit of 

nephrology specialists by offering a dependable Clinical Decision Support (CDS) tool. The 

technology achieves a Recall of 1.00, thereby eliminating false negatives and enabling general 

practitioners and community health workers to perform critical tests with expert-level 

accuracy. This optimization guarantees that limited specialist resources are allocated for 

verified high-risk instances. The model's intrinsic robustness to absent data—resulting from 

recurrent reagent shortages or disjointed recordsmaintains diagnostic integrity under 

suboptimal conditions, transforming "informational noise" into useful clinical signals.The 

framework's hardware-agnostic and computationally efficient design addresses the deficiencies 

in high-performance infrastructure and stable connection necessary for intricate deep learning 

models. This technique harmonizes algorithmic robustness with infrastructural realities by 

ensuring compatibility with legacy workstations and low-power mobile devices. This 

democratizes access to advanced AI, guaranteeing that premier CKD diagnoses are not limited 

to elite tertiary centers but are implementable at the point of care in the world's most 

disadvantaged populations, thereby promoting global health equity. 

Limitations and Future Directions. 

The suggested architecture has remarkable diagnostic performance; nonetheless, several 

limitations require recognition. The study used a relatively small dataset; while this cohort 

yielded a strong signal for the classification job, augmenting the sample size via multi-

institutional partnerships might further bolster the model's statistical strength. The absence of 

external validation on geographically diverse datasets continues to be a critical subject for 

future research to ascertain the framework's generalizability across various clinical 

environments.  

To facilitate the transformation of this diagnostic prototype into a scalable clinical instrument, 

subsequent research will employ a comprehensive strategy prioritizing transparency, validity, 

and accessibility. A principal aim is the incorporation of Explainable AI (XAI) frameworks in 

an upcoming specialized study; by elucidating the opaque 'black-box' characteristics of the 

Random Forest model, we seek to furnish clinicians with transparent, feature-level insights that 

enhance clinical trust and support informed decision-making. The framework will concurrently 

undergo multi-center external validation utilizing independent, large-scale datasets from 

various global regions to confirm its robustness across differing demographic profiles and 

laboratory standards. In addition to technological validation, a primary focus is the execution 

of real-world clinical pilot programs to assess the model's influence on diagnostic workflows, 
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early intervention rates, and overall effectiveness at the point of care. The development of a 

lightweight Mobile Health (mHealth) application will be prioritized to provide this high-

performance diagnostic tool to frontline healthcare workers in distant, resource-constrained 

regions. By following these integrated directives, we seek to enhance this framework into a 

universally accessible, transparent, and clinically validated solution for the early detection and 

management of chronic kidney disease. The findings of this work highlight the revolutionary 

potential of combining ensemble learning with smart, cost-effective feature engineering. The 

proposed methodology effectively overcomes the primary obstacles to CKD screening in 

resource-constrained environments by attaining flawless diagnosis accuracy while ensuring 

computational economy and robustness against data sparsity. This research illustrates that 

superior clinical intelligence does not rely on costly infrastructure but on the effective 

integration of powerful algorithms and readily accessible data. These findings offer a scalable 

framework for improving global health equality and clinical decision-making. Therefore, the 

subsequent section encapsulates the principal contributions of this study and provides 

concluding observations on its wider significance for future nephrological care. 

 

Conclusion 

This research aimed to address the substantial gap between enhanced diagnostic capabilities 

and the practical constraints of resource-limited healthcare systems by investigating the 

feasibility of achieving high-fidelity chronic kidney disease detection using exclusively low-

cost, standard clinical characteristics. The results unequivocally demonstrate that an optimized 

ensemble learning framework, particularly the Random Forest model, exceeds both 

conventional and intricate deep learning architectures in diagnostic accuracy and computing 

efficiency. This study illustrates that achieving flawless discrimination between healthy and 

diseased states through the intentional preprocessing of readily available laboratory data can 

yield a "gold-standard" diagnostic tool that is completely hardware-agnostic and robust against 

data sparsity. The primary contribution of this work is the transition from resource-intensive 

AI models to "efficient feature intelligence." This demonstrates that optimal sensitivity may be 

achieved without dependence on costly biomarkers, rendering life-saving early diagnosis a 

feasible reality for primary care facilities in underprivileged areas. This discovery is important, 

as it democratizes access to advanced medical screening, ensuring that the advantages of 

artificial intelligence are not exclusive to affluent institutions but serve as a means for global 

health equity. This study confirms the diagnostic engine's core resilience, setting the stage for 

subsequent research focused on algorithmic transparency and practical implementation. Future 

initiatives will concentrate on incorporating Explainable AI (XAI) to enhance clinician trust 

and validating the framework via multi-center clinical trials and mobile health integration. This 

study functions as a scalable model for a new generation of economical, transparent, and highly 

precise diagnostic tools designed for the world's most at-risk people. 
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